
Fault Tolerant (%aractcristics

of Artificial Neural Nctwo]*k

Elcctmnic Hardware

by

Frank C. ~CC

———. —... .——. —.

A ‘] ’hCSiS ]’rcsclltd  10 thC

I;ACUI:I’Y ol~rl’llli  SCII()()I. O1; 1:N(i1N13iRlNG

UN IVIWSI’1’Y O1; SOU’1’I IIII<N CA1 /ll;Ol<NIA

In Rulial  l;ulfillmcnt  of the

Rcquircmc]]ts  for lhc IIcgrcc

MAS’1’IiR 01: SClliNCli  IN II1OMIH)1CAI. liNGINIiIH<lNG

Col))v-icql)f 199.5

May 1995

I“r(illk c. Z(?(’



ii

Acknmvledgmcnt  s

I wotll(l  lik to tllnnk 1.(. Co]. Miclm]  (hi], LJ. S.A. I ‘., h4aterials & Structures

l’rogram h4mgcl” o f  the II:illistic  h4issilc  l)cfcnsc Or:,ii]]iz.:t(io]l  (Bh41>O) for

sponsoring this lCSCiil’Cll. III ii(l(litioll,  I would  :IISO lilw to acknowledge the Jet

l’ropulsi(m 1.[ibolilto]y”  (JI’I .), tl]~ Cilifot”t)iii  lns(i[lltc of ‘1’ccIII}ology,” :it](i Ihe National

Acmnautics :tIKi  S}>it~c Administration for p oviding the ncccssary  facilities an(l

equipment to conduct the cxpcrimcnts.

1  ~it]] i]](lcl~tcd  10 I liirt”y  1,{il]~e])t)il~l)~r, 1)1. ‘1’iill~]  I  )ilt](~, ;IIKI  III. Anilkumar

‘1’hnk(mr of tllc Concurrcl]t  l’r(xxssing  lkvices  group  iit J1’1. for their assist:me  with

tllc cxpcrimcnts,  their cent ribulions  in the 2111iilySi  S, ad illl tllc ir helpful suggestions and

Colnmcnts. 1 alll  211so  vcl”y :Ippreciativc  iilld pralcfll] for tkir t i m e  and energy in

reviewing this pil])C1’.

1 would  Iik to e x p r e s s  m y  apprcciiltiol) to Illy il(lVi SO1’  and the umnittee

members, 1)1”. ‘1’hco(lol”c”  lkrgcr, 1)]. Vilsilis Mi\rl]l[\t’tlis,  iil)(l 1)]. IIing Shcu, for t h e i r

g(li(liil]~c  tl]rougl]()[lt  IIIy y~iirs  tit tlIC lJnivcrsity  of SOU(I]CII] (llif(miii.

liillillly, 1  Wollld  like tO tll[lllk  Illy pill’ClltS, I;lainc,  al](i  Willimn Ycc, for their

continuing supjwrl w(I cIlcoLIIiIgcIllcIlt. ‘1’hcy mide it all possiblco



. . .
111

‘l’able d’ Contents

Ckiptcr Rigc

Ackl)owlc(lg]llcllts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..$. . . . . . . . . . . .ii

‘1’able of Conlcllls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
. . .

list of l;igum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .v

1 1 n t ro(iuct  ion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

2 Ncuml Nclworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...6
2.1 IIiologicai  Neural  Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...7
2.2 Artificial Ncurol Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1()

2,3 NclllalN ctw`(~rkl llcctt"()!]i  cll:ll"(i\\':irc  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2 .3 .1  Ncul”oll . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13

2.3.2 syll:lJ3sc  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..l4
2.3.3 ollt}>llt  llLlffel"  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..l4
2.3.4 C) I>cl':iti(~]l  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..l5

3 Iixpcrimcnt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .]g

3.1 Ra(iiation  Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19

3.2 IIinsc(i  vs. Unbiasc(i C%i])s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21

3.3 Chip ‘1’csts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
3.3.1 Nclll()llr  l'cst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...22
3.3<2  c) Llll)Llt  Illlffcr rl`cst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..2~
3,3.3 Syi]i\]>sc.NctiI()]  ]'l`cst  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
q.q.d  h4c.1~I()1yr l`cst  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 l;tiilurc Mo(ics . . . . . . . . . . . . . . . . . . . . . . . . . . . ..!...... , ..!.,...,.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27

4.1 Unbiasc(i Chips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27

4.1.1 lilcctl"()]l  ll:i(ii:lti()ll  . . . . . . . . . . ..< . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..2~
4.1,2 G:ll]~ll~:i  l<ii(li:iti()ll  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.1.3 l']()t()l]l  <:l(ii:lti(Jll . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...34

4.2 Iliasc(i  ~hii~s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..c. o.i . . . . . . . . . ..$.. 58
4 ,2 .1  lllc.ct]”ol]l  <~l(ii:ltiol]” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2.2 G:il~ll]la  l<:\(iiilti(~tl  (l,()wl)(~sc  l?:ttc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..6~
4.2.3 G:~l~~ll]:~ l{:i(ii:lti(~ll  (lligll l~()sc  I/:\tc)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...62



5

iv

4.2.4 l’roton” Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

]Iiscussion . . . . . . . . . . . . . . . . . . . . . . . . ..$.o  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..! . . ..o . . . . . . ..9l
5.1 lli[lsc(l vs. lJlll)i:lsc(i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...92
5.2 l-?wli:i(ion  Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...!.!..  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5 .2 .1  Unbimc(lChips . . . . . . . . . . . . . . . . . . . . . . . . 4 . 0, . . . . ...< . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96
5.2.2 lli:isc(l  Chips  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...98

5,3 l)OSC Rdtcs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99
5.4 l)cgmbt ion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101

5.4.1 NcL]r()]I  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..lol
5.4.2 Ol]t])llt  l]l]ffcr  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..lo2
5.4.3 sJ~ll:lpsc  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..l()2

5.5 ])owcr (k)nsumption  ad l.:~tcl]li]l  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.6 Allllc:lli[lg  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10R

() Conclusion and ];lltlll’C  l<csc:il"cll  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11O

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115Rcfcl’cllccs

Appendix: Ar[ifici[il  NCUMI Network C~l]ip  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
A,l Neuron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .,, ,. 117
A.2 syll:l])sc  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
A.3 Olltpu[ IIuffcr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121
A.4 Rcfclmccs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127



v

lJist of Figures

1

2

3.1:1

3.11)

3.2:1

3.2b

3.3a

3.3[)

4.lii

4,11)

4.lc

4,1( I

4.1 C

l]lock Ili:lgram  of the Artificiiil  NCLM1  N(twork chip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

lll(xk  IIiilgltllll of NCUI:I1 NCtwo]k Architecture

Results of llnbiasd  Chip

]’crccnt M(lnotonicily  1 lrror vs. “1’otnl  Ra(iiation
for All Unbimxl  chips  (Gamma, l;lcctr(~ll,  and I

l’crccnt h4(~n(Mnicit  y I irror vs. Amlc:llillj)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

)Osc
tototll<a(li:itiolls)  . . . . . . . ...36

for All lJnbi:lsc(l  Oips (G[il)~l]lii,  lllcctroll, and l’rotol~ Ra(li:itions)  . . . . . . . ...37

]’Cl”CCllt  h4cmory ] il”ror VS. ‘1’(lt:~ll<:l(li:ltioll  lhse
for All [Jnbi:lscd Clips (Gamma. l{lcctrol~,  and l’roton  R:i(iiutions)  . . . . . . . ...38

l’crccnt h4cmory  1 {nor vs. Annealing
for All Unbinsc(l  CXips (GmnmtI,  l;lcctrotl,  ad l’roton  Rn(liations) . . . . . . . ...39

Pcrccnt  Walliing-(-)ncs  h4cmory  IM”or vs ‘1’otnl Radiation IIosc
for All lJnbi:iscd (l~ips (Gamma, I;IMN]], and l’mton Radiations) . . . . . . . ...40

Pcrccnt Walking-ones Memory llrror vs. Annealing
for All Unbi:tscd  Olips (Gammti, lilcctroll,  and l’roton R:i(liations)  . . . . . . . ...41

Rtwlts of IJnbinscd Chip under Kkdr(m IM(linli(m

532 Sy]l:il>sc-NcLItoll  ~h:lrx[cris(ics  at () kmls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42

532 SyI]:I]>SC-NCtIIOIl  ~llarxlcristics  [it 40 krads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...43

532 Sy]l:ij>sc-NcLII(Jll  ~hnrncteristics  nt 60 kra(is . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

532 SyIl:i]>sc-NcLII(J]~ ~harxteristics al 80 kr:i(ls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...45

532 Syll:ij~sc-Nctiloll(;  l~:il~ictclis[ics;it  lookrwls” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46



vi

liigllrc Page

4.lf

4.lg

4.11)

4.li

4.lj

4.2

4.3

4.4

4.5

4.6

4.7

S.la

S.lb

5.2a

5.2b

s.3a

532 Syll:tI>sc-Nclll(  Jll~I~:il”:{cteristics:it  l?()kl`:t(ls  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...47

532 Synnpse-NcLNn  characteristics at 140 kra(ls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

532 Syl~:\]>sc-Nclltol~  ~ll:lfi~ctcristics:tt  140kttl(ls,A]  ~t]c:ilc(i31  hollrs . . . ...49

532 syn:]psc-NcuM)t) (;ll:lltictcl.is[ics  :lt 140 kt[KIs,  A]]t]~iil~(l  60 IIOUH . . . . . . 50

532 SyII;~J>sc-NcLIIOII  Chomctcristics  at 140 kr:I(ls, Al~]~c:ilc(l  106 hours . . . . 51

Neuron (){;ll~irttctclistics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Neuron 1 C;l]:il"tictelistics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...53

Output llllffclC ~llttr:lctclistics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...54

Pcrccnt M()l~()t(~]~icit~~  llrj()l.b  y~()lLll~l[ls  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...55

J’crccnt  N4cll)()l"y  1{1'1"()1" llJ'c()lllllll)  s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...56

Mcm(Jry  IIit llrrors for l;irst 200” Repor[cxi  IWors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

l{esul[s of IJiasd Chip

Percent h~onotollicity  ];rror vs. “1’otal Ra(iiation  1)(Mc
for All l{iase(i  chips (G:immi,  IllcctmIl,  [(MI Pro((m Ra(li:tlions)  . . . . . . . . . . . ...65

l’crccnt Llonotonicity  1 kror vs. Anllc:ilin/’
f(~] All lliascd chips (G:iil]m:i,  lllcctloll, iil](l  l’]otol~”  Ri[(ii:l(iolls)  . . . . . . . . . . . ...66

]>crccl)t  Memory ]{1’ror VS. ‘1’otal  Ra(li:ttion IX)SC
for All IIi:lscd  Chips (GLII]ll]~[i,  IllcCt](~ll,  ii]l(l  1’]0101] Rn(liations)  . . . . . . . . . . . ...67

Percent Memory IWor vs. Anllctiling
for All Hiascd Chips (G:IIIIIwi,  Jll~~tl.(~]], ill)(l  l’]oto]l” Ritdi[itiolls)  . . . . . . . . . . . ...68

Pcrccnt Walking-Ones Memory 1 Wor vs. ‘I”otal Ra(liation  lhse
for All Ili:lse(l  Chips (Gmma,  I{lcctron, and l’m[on l<wii:~tions)  . . . . . . . . . . . ...69



vii

IJiglll”e Page

5.3b

6.la

6.lb

(),1 C

6.2

6,3

6.4

6.5

6.6

6.7

7.]a

7.lb

7.1 C

7.1(1

701C

7.2

7.3

7.4

l’crcent  Walking-ones Memory lhmr vs. Annealing
for All IIiascd  chips (Gwnma, };lcctron,  {111(1 Proton Radiations) . . . . . . . . . . . ...70

Rcsulls of Biased Chip under Itlcctron Radiation

532 Syll:il>se-Nclllotl  Characteristics at () kra(ls . 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71

532 S>~Il:Ipsc-NctLI’(JI)  Characteristics at 4 kra(ls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

532 Synapse-Ncur(Jn Characteristics at 5 kra(is . . . . . . . . ..> . . . . . . . . . . . . . . . . . . . ..4 . . . . ...73

Nctl](Jll(  )Cl~:ll"actc]"istics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...74

Neuron 1 Cl]:lr~ictcris(  ics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...75

Outpt)t ]Iuffcr CYlaracteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...76

l]crccnt h40]](~tonicity”  lllr()ub  yCI()lllt~~tls  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...77

Pcrccnt  Memory Iirl()]"t lyC[~ll]ll~l]s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...78

Mcm(Jry IIi[ lh’rors for I;irst 200 Rcportd  Ilrrors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Results of IIiasd Chip under (;amma Radialim a[ I.ow l)ose Rate

532 SyIl:Ij>sc-NcLII()]]  CYl:iractcristics  at ().0 kra(ls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

532 Synupsc-Ncur(Jn  C31mwtcristics at 6.0 kids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

532 Synapse-NcuK)n Characteristics at 7.() kra(ls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

532 Syn[~psc-NcLIron Characteristics at 7.5 kra(is . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

532 Synapse-Neuron Claractcristics at 7.5 krads, AHI)eolcd 112 hours . . . . . 84

Neuron  () (;l];il":lctc]"  istics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Neuron 1 ~h:lr:(ctcristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Output  IIuffcr Chamctcristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87



. . .
Vlll

l:iglll”c Page

7.5

7.6

7,7

8

g

10

11

Pcl”ccnl  M(mot(micity  111’rorby c()lLll)llls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

1’CI’CC1ll  h4clll()1"y lIl"r()l'  t)yc()ltlllllls  . . . ..!.. $ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

McImry  l]i [ I{rrors for };irst  200” Reported Ilrrors go. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Appendix

l%otograph  o f  t h e  Ar(ificinl Ncuwl Nc(workChip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

C i r c u i t  S c h e m a t i c  o f  t h e  V a r i a b l e - G n i n ,  SigmoidalNcLIro D . . . . . . . . . . . . . . . . . . . . . . 124

Circuit Schematic of the l’logral~]lll:il>le  7-bil Synapse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Cimil Schematic of the output  Buffer
~i(ic-I<atlgc  lJ1]ity-G:iill  I;ollowcr) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126



ix

Abstrad

‘I”hc f:iult  tolerant characteristics of anal(Jg-VI .S I artificial neural network (with

32 neurons and 532 synapses) chips arc stLl(iic(i  by exposing lhcm to high energy

clcctr(ms, high energy protons, ” an(i fwmma ionizing ].il(ii:]tiolls  un(ie]. biiise(i  ad

unbiasc(i c(m(iitions. ‘J’im biase(i  chips bcume  ]]ollfLlil(:li(Jll:ll  af[er r e c e i v i n g  a

cumulative (lose of less timn 20 kra(is, wi)iic ti]c L]nbiasc(i  chiix  only started to silow

degradation witil a CllllllliiltiVC  (iosc of over 100 kra(iso As the totai radiation (iose

incrcascd, [Iii (he CollliX)llClltS (iCIllollS(~OtC(i  ~~llCCfll]  (iC/1’:l(iiltioll. ‘1’ilc analog

sigmoi(ial function of the neuron  bccaInc s(cclxr (il~CICilsC  in gi~i])),  current  icakage

from tile Syllil])StX  progmsivcly  si]iftcd  the sigmoidai curve, iill(i the digital mcmoly  of

tile synapses and the memory a(i(lrcssing  circuits began to f?l’i~(illilily Pail. From these

radiation cxpcrimcnts, w c  can learn I]ow to mo(iify  ccrlain (icsigns o f  the neural

network electronic i]il~(iwii~~  witi)out using. rti(ii:i(ioll-i l:lr(icl~il~g  [cchniques  to increase

it Sl_Cliilbiiity  illl(ifillll[  tol Cl”iillCC.
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Chapter 1

]lltI*O(hJCtiOll

Signifkmt  progress  has been mi(le in the research and (Icvclopment  of artificial

neural  nclwmks within the past few years. lnspirc(i  by biological” systems, allificial

neur:il  networks are highly parallel data processing circuits ami are particL)larly  suited

to “1C211”11” ill-(lcfind  or fuzzy input-output r~lationships  an(l to perform a(iaptive

interpolations [ 1 ).

With the recent technological advances, popularity of artificial neural networks

has grown mpi(ily, and it has found widcsprc:d applications in a variety of fields.

Some of (he opcrat ions that ncLIral networks  caI L perform include: classification, where

an input pattern is passe(i to the network, ad Ihc network pro(iuces a representative

class as output; pattern nmtching,  where an input pattern is passe(l to the network, an(l

the network produces the col.lcsl)oll(lillg”  output pattern;  pat[crn completion where an

incomplete pattern is passed to the network, and t h e  IIctwol”k pl”o(lllccs  all olltput

pattcmt hat ll:lstllc  lllissitlg  pol”tiollsof  tlleillpllt  pattcrnfillcdin;  noiscrcmoval,”  where

a Iloisc-col”ltlj)  te(i”  input pattern is prcscntcd  to the network, ad the network removes

somc(orall)of  the noise ad produces ~lcle:i]lctvcrsi(l]l  ofthc input pattern as output;

opt imi?a[  ion, whew an input pattern rcpmsellting  the illitiiil values for a specific

optimization problem is presented to the network , and tl)c rlctwork  produces a set of
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variables that rcprcscnts a solution to the problmn; and control, where an input pattern

represents the current state of a controller an(i tlm (icsircxl response for the controller,

and the output is the proper command scqucncc that will clcatc the desired response

[2]. 'l-lllls,  lllc(livc]sity( )f:ll]l]lic:iti(  )tls()fa rtificittll lcLll:llll  ctw(~lksall  ()wslllclllt()h

applied to problems in cngimmi]lg  control systems,

vision (e.g. optical character recognition and image

speech  rcmgniti(m, computer

proccssing)$ financial market

analysis, ad wc:itllclfo]”cc:tstillg,  to nam a few examples [11. Neural networks are

capable of easily pcrfonnillg  many tasks that c~mvcntional  rt’grcssion techniques and

traditional artificial intelligence systems find difficult or impossible to solve.

“1’here has also been a high

networks to thcficld  ofmcdicine.

lcvelofintcr(’st  i]ltllc:il)plic:lti(~ ll(~f:ll-tificial  neural

lmagc processing neural  networks have been use(l to

diagnose hcpatic  masses [3,4] an(i breast tumors [51. Rcscarchcrs  also have trained

mural networks to interpret vetltil:itiol]-  }>e]”fLlsioll”  (V/<))  lun! scaIls by exposing it to

looconsccutive”  V/Q scans with pL]lt]lo]l:~ry:  illfi(~gr:lpl~icc  (~]lcltitio]l”  [6]. It was then

t]sc(ltoc  l:lssify2811cw  scans wi[hout :icccss t(~tllc allgiogl.tilllli  ccorlelatio]l.  When the

resultant classifications were compared with tll(:  rankillg,s of an experienced observer

who also mid the scans withoul  knowledge of the corrcla[ivt~  allgio~raphic  (iata,

nclwork  significantly OLitj>c]f(~].]llc(l  the cxpcric]]ccd  observer in the prediction of

likelihood of h pulmonary embolism.

tbc

tbe

Somcrcsearchers  havcbcgun  to realize that tbc clinical i]] formation generated

in the high dcpcndcncy  environment (intensive care unit, operating room, emergency
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mom, recovery room) can actLMlly be intcrprctcd  as a “pat(cm, ” with each unique

combination of symptoms, sijys, and laboratory results representing a different clinical

scenario.

Onc such rcscarchcr has created a nctlral network to diagnose myocardial

infarction in persons rcpor(i]lg  to the emergency room complaining of anterior chest

pain 17,81. A neural network was trained to i ntcrpret  history, physical cxmination

findings, ad specific cmcrgcncy  room clcctroca]  diogram  (f K(;) findings and to pre[iict

the probability that the paticnl  IIil(l suflcrcd a 1 nyocardi:l]  it-l farctionc  “1’he diagnostic

pcrformtncc  of the artificial neural network w:is compartxi  with the opinion of the

attending cmcrgcncy  room physician. ‘1’hc physician (Iiagnosc(i myocar(litil  infaction

with a sensitivity :in(l  specificity of 77%, and 84%, mpcctivcly,  whereas the neural

network pcrformc(i with a scl~sitivity  mi specificity of 97.2% an(i 96,2%. l’i~is is a

result of the neural network learning from exan]ples. Subsequent examination of the

Irainc(i network rcvcalc(i  that it prc(iictc(i myocmiial infarction by placing (diagnostic

importance on clinimi

prc(iictivc  of infarction.

‘1’ilCSC CXitlllJ)lCS

V:lriilblCS that ilWi not 1)( Y.311 Silow] p revious ly  to bc h i g h l y

show that artificial llet]]i[l  networks i~avc the ability to support

medical (iccisiolls. ‘1’hus far, lhc types of netwo]k  archi(ccturcs  an(i learning algorithms

usc(i by biomcciical  rcscarchcrs  have been rclatilc]  y sin Iplc. ‘1’0 extcn(i  this technology

to grmtcr  an(i more compl icatc(i medical al ~i)licalions, flltlll”C research ncc(is  to
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investigate the propcrlics ond behavior of complex, state of tlm arl, application-specific

network topologies.

‘1’hc potential benefits of neural nets extend beyond  the high computation rates

provi(led  by massive parallelism. Neural nets typically provide a greater degree of

robustness or fault tolcmncc  than V(M1 Neumann digital sequential computers since

there arc many more processing nodes, each with primirily  local connections, and the

information is CO(1C(1 distributively on weighted synaptic col~ncctions  or links, Damage

to a fcw no(ics or links thus need not impair ovctiill performance significantly.

Nqost ncLIral network learning alp.orithm~ also adapt tl~cir  synaptic connection

weights in time to improve performance based on the current results. ‘1’his is a major

focus of neural network research, an(i the ability to adapt an(i cent inuc learning is

essential. Adaptation also provides a degree of robustness by compensating for minor

varititions in charac(cristics  of neurons. Tra(litional  statistical techniques are not

adaptive, typically proccssin.g all training dtita sillllll([illcollsly  before being given new

data. Neural network classifiers are also non-pa] amctric and nMkc weaker assumptions

concerning the shapes of un(icrlying distributioils  than traditional statistical classifiers.

“1’hcy my thus prove to bc more robust when distributions arc gencratc(i  by nonlinear

proccsscs  and arc strongly non-Gaussian.

Rcccnt a(ivanccs in ncLlral networks have incrmsc(i the level of interest for

critical applic:itions, such as (icployment  in spwe, for military applications, in iligil
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energy  physics laboratories, in chemical processing industries, or in hmpitals where

reliable pcrfor]mncc and longevity is a requirement.

‘1’he purpose of this research is to dcm(llls[ra[e  [he Pdut(  tolerant  characteristics

of analog  neural network VI .S1 chips. Exposure to ionizing mliation  was performed in

order to study tl]c behavior iind graceful deg,radai  ion

in the ncxl ch:ipterj  before intro(iucing  the

of the electronic hardware.

artifici:d  neural network chip, we

give a brief dcfini(ion and b:~ckground  on the artificial ncLlr:il  network model and its

tierivtition from the biological model. Chapter 3 will (Icscribe the experiments

conducted on the electronic hardware, including the

sources, chip setup, an(l the tests to be performd to

componcn[s  of the chips. “1’hc  rcsulls of the radi:ltion

4, providing a detailed (inscription of the effec[s of

lhrcc types of ionizing rdiation

study tllc dcgradntion  on various

cxpcrinlcnls  arc given in Chapter

radiation at different cLlnlLdative

doses on the performance of the chip, ‘1’he results m compiled and analyzed in

Chapter 5. We elaborate on the nwlmisms

effects. Choptcr  6 provides a conclusion (iraw]]

charted tow:irds future rcscmch.

rcspol)sible  for different degradation

from our cxtmimcnts  and a direction
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Chapter 2

Neural Networks

Although tlmrc arc numerous ways to define artificial neLlral  networks,

K(honen  [9] has attempte(i  to state it with the following general  definition:

‘1’he structure of artificial neural nc(works  arc mo(lclcLi after the organization  of

the human ncrvolls Systcm, specifically the h[Iman brain. “1’hcy are composed of

elements that pcrfwm in a manner  that is analog[)us to the most clcmcntary  functions of

the t~iological  neuron. Although the rcseml)lance is superficial, artificial mral

net works as physical cellular networks exhibit such brainl  ike characteristics as their

ability to learn from experience, generalize on their knowledge, perform abstraction,

and make errors, which am all more charactcris(ic  of ani] ml bchavim  than that of

conventional (ligitalcollll>L]tcrs.

T() intro(lucc  the neural network hardware, wc first cxplorc  it] a simplistic way

the biological equivalent before tracing artificial neural networks and their electronic

embo(limcnt  from the “c(mncctionist”  point of view rather than biological.
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2 . 1  lJiological Nci]ral Net\vorks

A human brain con(ains  over one hundrui billion computi]lg  elements called

neurons [ 1 ()]. l~xccc(iing  tl)c nulnbcr  of stars in our Milky Way galaxy, these neurons

al”e tile fundamental buikiing b]ocks of tile bio]ogicai”  neural network, the nervous

system. A neuron is an elementary nerve cell which typicaliy has three major regions:

the cell body (or soma), the axon, an(t the dendrites.

‘1’hc cell body, simiiar to any other cell, con(iucts maintenance activities for the

neuron. 1 lowcvcr, the outer membrane of the ] Icuron’s ccli bo(iy also has the unique

capability of generating nerve impulses callc(i  action potentials. “1’i]e axon is a long

<ylindricfil  fiber (hat serves as a transmission litlc  to Ciil”l”y  the impulses from the cell

bo(iy. Ti~e end part of an axon splits in(o a fine arboriz,ation where each branch

terminates in a Sl]liil] en(i bLl]b almost  touching the (icn(iri[es of the neighboring

neurons. l~cn(irites form a (iendrilic  tree, a very iinc bLIsll of thin fibers emanating from

the cell bo(iy. l:unct ionall y, the (icn(iritcs rc~eive infmnal  ion from the axons of

ncighboril]g  ncur(ms.

‘1’his axon-(icndrite  contact orgilll is called a synapse and is where the neuron

introduces its signal to the neighboring neuron. ‘1’here arc perhaps one hundred trillion

synapses forming the illtcrc(~llllcctiol~s  within the biologiCitl”  ]iell]”iil network [10]. The

signals reaching ii synapse an(i rcccivc(l by (icn(iritcs arc electrical ilnpulscs. But, the

illtcl.llcllloll:li  transmission arc usually aflcctc(i b> thcrclcase  of chemical transmitters at

the synapse, where the axon terminals pcncrate  the chemical that affects thcrecciving
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neuron’s dendrite. l~ach neuron is connected 10 thousands of other neurons in this

way.

Fromthcrc,  the sigll:llsarc]~:issc(l  on to the CCII body of Illermeivitlg]leuroll

wllicll eitllc]g c]]crillcsall  illlplllse t{)its:ix(~ll  tot~cp:issc(l  on to stlcccc(lillg ]leurolls, or

pl”o(lllccs  norcsponsc. ‘1’hc neuron’s response is

lllCIlll)l”iil)  Cl”CtiCllCS ;lboVCiiCCl”tilill  till’CSllol(l ICVCI.

ii SIICII, which il~fll”C~atCS  tl)C llliigllitll(lC  Of thC

gcncratcd  ifthc total potential of its

“I’llcl~~cll~l~ t;i[lec  allbec(~[lsi{iere(i  as

inmning  Sigllill S over a shorl time

interval C:illCd thC pcri(xl of lil(C1lt summation. incoming signals can bc excitatory if

they cause the firing, or inhibitory if they hindc] the firing of the response. Thus, the

neuron gcllcl”iltcs:i~)lllsc  response and sends it 10 its axon only if the cxcitati(m  cxcccds

tllcillllil>iti(}  lll>ytllc:tlllotlllt  c:illc(i  tllctllrcsllol(i  of the neuron.

Sincca syllil~>ticcollllecti(~ll

receiving neuron, it is ]>1’itCtiCal  to

rcspcclivcly,  to such connections.

causes the excitatory or inhibitory reactions of the

assign positive iill(l negative unity weight values

~’his allows us 10 rcforlnulatc  the neuron’s firing

condition such that the neuron firm when the total sum of the weights to rcceivc

illlplllscs cxccc(ls  tllctlll.esl](~l(i  Vil]UC(~L1l’illg  tllC latCll(  summalion  period.

“1’hc incoming impLllscs  to a neuron

neurons an(l by the neuron itself (feedback),

ci~]l ()]lly bC ~L~]lc].iitd by neighboring

lJsL]illly,  a ccr[ain number of incoming

impulses arc rc(]uired to lllilkC a till”~Ct  ccl] fire. lmpulscs  which arc closely spaced in

time and arrive synchronously are more Iikcly  to cause the ncL]ron  to fire. As

mcnti(mcd  before ,  obsc].viltio])s”  haVC bCCIl ]widc  tlliit  biologiCiil”  l~ctworks  p e r f o r m
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temporal integration and summation of incoming  signals. ‘1’hc resulting spatio-tempera]

processing pcrforme(l by natural neural networks is a comp]cx  process and much less

structured than digital computation. The neural impulscsarc  not synchronized in time

as (~pposc(it otllcsy llcllrollotls  (Iisciplille of(ligit:ll  computation.

7`l~ecll:~r:lctctistic  fe:ltllre  () ftllebi()l()gic:il  neuron is that tllesigll:ils  generated

arc citbcr  absent or have Inaximum values. ‘1’his means that information is transmitted

bctwccn the nerve CCIIS by means of binary si~,ntils.

Despite its apparent silup]icity,  this col]ll>~lt:ltio]l~ll”  fumlion accounts for most of

tbc known activity of the twain. ~J1l(icrlyillg  it, l](Jwevel,is:~  complex electrochemical

system. ‘1’his network of ncurolls  islcs]>(~llsit>lcfol:ill  of the phcmmena that we call

tl]oLlghl,  emotion, and cogni(iol~,  as well as fo] pcrfoming  Inyriad scnsorimotor and

autonomic functions.

The brain is s(mchow capable of taking ]Ieurons which arc five or six orders  of

magnitu(lc  slower than silicon logic gates, and organi~.ing  thcm so as to perform some

computations mny times faster than the fastes( digital computer. One way tbe brain

seems to have managed to do this is by missive parallelism ill ils gray ma((er.  That is,

the computing elements are arranged so that very many of thcm arc working m a

problem at the same time. Since there are llu.gc nulnbcrs  of neurons, tbe weak

computing powers of these many slow clcnmlts are combined together to form a

powerful l’csultallt. l’hc architecture of the brain, bowcvcr,  is not well undcrstmd  at

this time. ‘1’hespccd [~ftllcllclllollsll:ivc not inmasc(l  mLIch involution, sothe way
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to get more power seems to be to add nm<e  neurons, a strategy highly developed in our

own massive cerebral cortex [ 1()].

l-he above discussion is extremely simplifie(i  when seen from a neurobiological

poinl  of view, though it is valuable to gain insight into the principles of “biological

computation. ” Artificial neural networks arc far simpler than their biological

counterparts.

2 . 2  Artifici:il NeL]]Oal Net\vo]”ks

A variety of artificial neural network architectures  and algorithms have been

rcportc(i  in the literature [l]. In general, the arch itcctul e can be (icfine{i  as an

illtcl”col~tlcctioll”  of neurons such that neuron outputs arc col)ncctc(l,  through synaptic

weights, to all otherncur(ms illcltl(iitlg  tllclllsclvcs.

Every neuron model consists of a processing clement with synaptic input

connections an(i a single output. The signal flow of neuron  inputs an(i output are

consi(icrc(i  to be tll~i(iirccti(~ll:~l. ‘]-]le IICUIOII aS ti processing no(ic performs the

operation of sLamuition of al] its weighted inputs (reprcscnti]lg synaptic strength]), an(i

subsequently, performs a nonlinear operation Ihrough its activation function. The

summc(i value, which (ictcrmincs  the activation level of the neuron, passe(i into the

fLlnction  may be consi(icrc(i as an analog to the biological” neuron’s membrane potential.

Different artificial neural network algorithms make usc of (iiffcrcnt  (definitions of the

activation function. Somcexamples  arc the har(i-limiting activation functions (binary
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functions) called threshold logic units and the soft-limiting activation functions

(continuous func(ions)  calle(i  sigmoidal chardclcristics. Most artificial neural systems

(10 not involve lhc biologica] neuron  features of’ delfiy, refractory period, or discrete-

timc opcr:ition. III fact,  the neuron model rcprcscnt  illst:tlltiitle(>Lls,  menmylcss

networks, since they gcncratc  the output response dctcrlnillcd  only by the present

excitation.

‘i’wo particularly popu]ar  networks arc the fcc(if(mvard  an(i the fec(iback

network architectures. In tl~cfol.l~lcr,a  llextcrll:ll  inputs arc fc(i to a layer (layer #l) of

neurons through  synaptic weights in such a wily that CilCll  input  is fed to all of the

neurons, Similarly each neuron  in lil~Cr  1 isconlicctcd to cacl) neuron of tllc next layer

(layer #2) through synaptic weights. IJaycrf121naybc  similarly conncctc(i  to layer#3

wilich may be the final layer giving the outputs  an(i thus tcrmc(i the output layer. The

intcrmc(iiatc ltiycrs between the inputs an(i the output  layer ii~C tcrmc(i ili(i(icn  layers,

“1’his architecture is callc(i  ii fccdforward  network because of the forwar(i flow of

s i g n a l s .  A  fcc(iback  nctwo]k  Ciln  bC obtiiinc(] flolll tl~C fccdforwar(i n e t w o r k  b y

umncc(ing  the neurons’ outputs to their inputs.

“J’his simple Liiscussion gives an in(r(xiuclion to the arcllitcctLlrc  of the artificial

neural  network an(i Cstiiblisl]cs a basis for the electronic IIit]”(lwiilt  design.
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2.3 Neural Network Electronic IIaI*clware

‘1’he ar~ificia] neural network chips were sj)ccially dcsigtlc(i by the Jet Propulsion

IAboraIory  (J I’I,) for conducting radiation  cxpcrimcnts  in space on an orbiting satellite,

but were designed and fabricated wi[hout any ]tl[li:ltioll-ll:  it(lci]illg  techniques or any

protection from radiation. It requires a single power supp]y of 8 volts and consumes

ICss  than 80 mw of powcl-, A brief description of this chip follows, but more extensive

covcragc  is given in the Appendix (page 11 6).

The neural network chip contains 32 neuron cells and 532 synapse cells

arranged in a partially populated (due to power limitations for space flight) 32 row by

32 column array. A block diagrtim of the layou[ of the artificial ncur:tl network chip is

shown in l:iguw 1. ‘1’hc neurons lic along H diagonal in the army. The synapses are

placed where the row number is lCSS than the column nulnbcr.  1 lowcver, when the

column  number is greater than 22, the synapses arc placed in every row position except

along the diagonal.

Neuron  () (botto]ll left in ~~igurc  1 ) cal  I only rcccivc input from an external

source. Neuron 1 also can rcccive input externally or from neuron 0 through the

synapse al row (), column  1. Neurons 2 through 31 reccivc i[l])uts on] y from any of the

otlmr neurons through tbc synapses in their resjm(ivc  colLIn)Ils.  ‘1’hc first 22 neurons

each can rcccivc input from as many synapses as the colulnn  number that they are

positioned in (i.e., neuron 20, located in column  number 20, (iIll rcceivc input from 20
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synapses). ‘l-he last 9 neurons in columns 23 through  31 all have fully connected

feedback circuits and thus have 31 synapses conl]cc[cd  to the input of each neuron,

‘1’hc naIUrC  of the neural network chip is primarily analog for compactness and

for low power consumption, with the digital portion only playing a supporting role.

l’hc In:ijor  allill(~~  C(JnlpOllClltS are the

major digital components arc the static

each of the 532 synapses.

neurons, synapses, aid an oLltput  buffer. The

memories for storage of synaptic weight within

2.3.1  NCU ~011

‘l-he neurons arc nonlinear tt:illsilllpc[l:itlce  amplifiers. ‘1’hc characteristics of an

operational amplifier resembles a sigmoidal fLlnction  and thLls is a natural circuit for a

ncuro]l. llach  neuron outputs a voltage whicl)  is a signmidal fLlnction  of its input

current. A block diagram of the neuron is showI  I in the upper right corner of Figure 2.

A negative inJJut  current forces the ncLll”on’s  Oulput hi~h,  an(i a positive input cLmrent

forces the output low. Section A. 1 of the Appcn(]ix gives a more detailed description,

A voltage to current converter is provi(lcd for each row to convell the neuron

output voltage to current input for the synapses, WhctI the voltage output of the

neuron is high, there will bc sufficient cLIrrent input for tl)c  synapses in that row to

multiply. ‘I’llclligl~ct”  tl]cl~cllioll output volt:  igc,tllel llotcclltlcllt” that will bc available

forthcrcspcctivc  synapse stonlLlltiply.  Oiltllc ()[llcr ll:ill(l,  iftllcilctlr()ll  v()ltage()Lltptlt

islow,thcrc  will l>cvit.tll:ll  lylloillI>lltc  tii.lcllt  tothesynapscs  in that row.
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2.3.2 Syllapsc

‘1’hc synapse circuit consists of ti 7-bit !nultiplying (iif,ital  to analog converter

(MI)AC) :ill(la 7-l>i((ligit:~l  ll~cl~loly.  Tlliscircllit  () Lltj>L1(s at~illttl-y  weiglltd 1~~Llltipleof

its analog  input current. 7’llc input current coming from the neuron in that row is

multiplied by the stored digital weight (integc] Pactor  bctwccn -63 ml +63). The

(ligit:\l ]~lcl~l()ry  pl"()vi(lcs  pl.()gl`:lllll~  l:ll>lew'cigl~t  s[oragcand isliill(lol]llyacccssible.  The

upper left cmcr of I;igurc 2 SI1OWS  a block diagram of this synapse. A negative weight

value pr(~grammc(l  into the synapse causes it to have a positi  vc output current while a

posi(ive  weight va]Llc  Causes the oulpu[  to bc negative. The circuit design is more

thoroughly covcre(l  in Section A.2 of the Appendix.

Each synapse’s current output is an input to a neuron in its column. Thus, there

is a single current sLmmling  node in each column to which all the synapses are directly

c(mncctcd,  and that node is alsoc(~llllcctc(lt(~tlle  input of thencuron  in that column.

2 .3 .3  output  IIuffcr

‘I”hc output bLlffcr  is a wi(lc-range trtlllscoll(ltlct:lllce  amp]ificr  configured as a

unity-gain follower. l’hc output voltage closely follow’s  its input voltage and provides

sufficient driving power to interface the neural lictwork chip to other chips. The input

to the output buffer is the vol(agc  from onc of the 31 neurons selcctcd  by an analog

multiplexer. A special circuit designed into the output mul(iplcxcr  allows the output

buffer to bc tested separately by fec(iing its input with an externally supplied voltage.
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The single outpu(  bLlffcr an(i multiplexer (lcsign  was utilimd to simplify the interfidce

bctwccn  the chip an(i its external circuitry by rtxiucing  tile number of separate output

signais. Section A.3 in ti~c Appcn(iix (iescribcs the characteristics and (icsign of the

buffer in more detail. Since all of the neural network’s output must go through this

buffer, it is tile most critical component (represcntin.g a singk point fdilure mcchmism

for tile chip).

2.3.4

Ileurai

Operation of Neural Network

‘1’ilc synapses in rows () mi 1 cm be

nctwok (I;igurt 1). NcuroIls  () aIKi 1

use(i  to provi(ic i]t]illo~  input values to the

can bc biasc(i  by an cxternai current input

so  that  t i le Syllitp SCS in ti)cir  rcspcctivc  rows wili  (Jutpu[ current  wilcn they are

programmc(i  with a nonzcro  wcigilt v:il  Lie. ]n this llliil’illCl”,  Iilc progr:immc(i  synapses

wiil form t h e  ncui”ons  i n  t h e i r  coli]lnns to ii cert:iill  vol(:tgc  r e l a t e d  t o  tile

syn:ipsc-wcigh(. ‘1’his is ilow the input layer of” neurons tire set to the (iesire(l  input

wiluc.

‘1’hc inpilt :iycr  of neurons tire conncctc(i  to a ili(i(icn  layer of neurons ti]rougil

syn:tpscs in tile s:imc rows its tile input neurons illl(i  in the s:imc columns as the ili(kien

llCUiWllS. 1 .ikcwisc,  tile hi(i(icn  neurons arc fe(i through syn:ti)scs  to a layer of output

ncutms.  l~inaliy the oiltptlt neurons coul(i  bc rca(i  out om at ii tiinc ti]rottgh the analog

multip]cxcr  of the Olltplit  bllffCr. All the untlsc(i  syn:ipscs were programmc~i to a

weight of zero so thtit they were cffcctivcly  nonexistent :in(i  shou](i have no effect on
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the opcrtition  of the network. A block di:igram of [hc operation of the ncLIral  network is

shown in ]:igure 2.

If my neurons were dctcrmincd  to be severely dnmagc(] by radiation, other

neurons could bc used in their place, and the sy]tapscs conncctcd  to the Faulty  neurons

could be pr(~gramnm(i  to zero and thus, thcoretical]y  have no effect (m the network,

Row () was usually used to control the network inputs. I Iowcvcr,  if row 0 was fmlty,

then those synapses would bc progrmmcd to zero, and the synapses in row 1 would be

used as the network inputs,

‘1’hc synapses in columns 23 through 30, where the row number is greater than

the colLImt]  number, could bc used to supply a fcc(iback path (I;igurc 1). 1 ]owever,  the

il~lplcl)lcll[:itioll  of ncura]  networks using fccdlxlck was beyond  the scope of this

cxpcrimcnt.  ‘1’hcsc “fccdtmk” synapses were only used in [he memory tests and in the

testing of the individual synapses.
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Chapter 3

Expe]*iment

‘1’o study the fiiult tolerant clmacteristics  of the artificial MUMI network chips,

they wcrccxposcd  totl~rcc(  lifferellttypcsof”  iol~iz,illgr:l(lititi(~ll,  A total of7cllips  were

used for the experiments where each chip wt~s either sctLlp with or without power

applied. Several tests were implcmcntcd  [() study  the effects of the radiation on the

various componcn[s  of the hmlware. ‘1’llc rwli:l( ion cxpcrimcllts were concluded when

the ncLIral network chips failed and were unit’stable. ‘1’hc following sections will

(icscribe these parts of Ihc cxpcrimcllt  in more (iclail.

3.1 Radiation Sources

loniz,ing  ra(iiatim is tlmt which possesses enough  cncl g y to break atomic b(m(is

an(i create clcctrodholc”  poirs (i.e., cxiusc  ionizal ion) in the n-mtcri:ils  of interest, which

in the case of MOS (icviccs arc priln:irily silicon (iioxi(le  :ln(i silicon. ‘1’his ra(iiation may

be in the form of photons with energies grc:iter  than the txlnd~.ap  of the material, or in

the form of particles such as electrons :tmi protons. ‘1’hrcc  tyl)cs of ionizing ra(iiatiom

were usc(i in the cxpcrimcnts:  high energy electron, high energy proton, an(i gamma

miiations.  ‘]’hc rti(iiation  exposure was comiuctc(i  at a uniforill (iosc rate an(i at room

tcmpcrat llrc.
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“1’hc electron irradiation  was conductc(l  at the JI’I.’s l)ynamitron  Accelerator

1 .aboratory  using a 1 .() McV electron source at H flLIx level  of 2.08 x 1(7 e-/(cm2-sec)

for a dose rate of 50 ra(l/scc. ‘1’wo chips were exposed to the electron radiation.

‘1’hc proton irm(liation used an 8.() McV proton source at a flux level of

I.OX 10R p+/(cmz-see), again for a dose rate of 50 ra(l/scc. “1’his also was conducted

using  two neural network chips at the Califon]ia  institute of Technology’s Tandem

Accckn-ator  1.aboratory.

Gamma irra(iiation was conducted at the JP1 .’s Total ](miz.ing  Dose I.aboratory

using a 1.25 N4cV 4,()()() curie Chc’(’ ~Jal)lllli{  Cell. ‘1’wo differcn[  dose rates were used

by placing a chip 14 cm from the source for a hiph (iosc rate of 50 ra(i/sec and another

chip 335 cm from the source for a low (lose rate of 0.1 rad/scc. “l-his was done to stLdy

the effects of high and low dose rates on chip (degradation. A total of three neural

network chips were exposed.

I:or each of these radia(ion  sources, the IIcural  network cl]ips were exposed to

the radiation for a specific time period to receive a particLllar  cumulative dose after

which the chips were tested. l’he chips would then bc exposed again. This cycle was

repeated until the chips showed severe dcgra(lation  and were untestable. At the

completion of each of the radiation exposure exl Jcrimcnls, rool]l tcmpcratLlre annealing

mcasurcmcnts  were ma(ic  on all of the chips.
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3.2 IIiasecl vs. Unbiased Chips

During the racii:l(ion  exposure, at least one chip was “llndcrb  ias” and one chip

was unbinscd. “Undcrb  ias” mcmsthat  powcrmws applicdto  the chip so that electric

fields were present in the devices.

“1’he biased chips had 8 volt powcrsupplicd  to the V(id pin. l’he inputs to the

biM tl”WISiStOl”S,  hoWCVCr, Wel”C tlll”lld “off”, :111(1 Ci!hCl”  C(MII)CCIC(] to gl”olll)d  for 11-~ET

devices or to Vdd for p-l:l~l’ devices. Additionally, [III of the output pins were left

floating and all of the digital inputs were groull(lcd. ‘1’hc llCI I’cslllt  was that lmny of

the individual triinsistors  in the chip ha(i no voltage applic(i  to their gates. I lowever,

since the synapse memory latches were d] uninitioliz.c(i, the st:itc  of a large majority of

transistors were rmiomly dctcrmine(i  c:ich time the chip was powered up. I’bus, the

triinsistors  in the neurons were also in a random state since their input ctcpcnded cm the

synapses.

“1’hc  ~oiil  of this specific biitsillg  schcmc  wiis  to avoid Ch40S latchup. This

occurs  when SOIHC jxmsitic bipol:u-  triil]sistors  ilrC  fonncd  from the Ch40S (ransistor

components which causes excessive power consumption. l.ilt~llllfl  still (Jccurrcd when

there was scvcrc(lcgra(lilti(~ll  at lligllcllllllll:ltivc (l(~scsof  rildi:ltioll  (Scc Section 5.5 of

Chapter 5).

The unbiased chip w:ts left with all the pins connected to a conductive foam

j)ii(l. 'l"l~is prcvclllc(i:lll}'  cl~:irgc  l] Llil(l-tlp ()lltllc tl.tillsist(lrs (illct() ra(iiati(Jll.
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One chip was bi:iscd and mother  (me was unbiased in both the electron and

proton radiation ex]msurcs. II] [he gamma irradiation, (me chip was biased while a

sccon(i onc was unbiased at the highdoser  ate (50 ra(i/see), and a third one was biased

at tllelow(loscr:ltc(().1”  rad/see).

3.3 Chip Tests

“1’o evaluate the effects of mdiation  exposLlre,  the neural network chips were

tes[cd on a 33 h411z 486 lllh4 A’]’ compatible computer with digital and analog

intcrfidce boards plugged into the ISA bus. ‘1’lw interface boar(js supplied (me 12-bit

A/DcI~annel,  two 12-[~i(  I)/Acll:illllcls,  :il~(l:lll  tlletlecess:tty( ligi(:ill/0s.

A fixture was constructed to test the chips which consisted of a fi4-pin  ZIF

(z,er(~-illscr( i(~l~-force) socket to hold tllccllip,((~l~llec(ols  for the col~l}~l~terit~tcrface,

power sll~>]>lyc(~llllccti(~lls,  and resistors to bias smechip inputs. in addition,{  iigital

level shifters were provided to enable  the 5 volt digital signals from the computerto

interface with the neural network chip at different voltage levels. Also, the fixture

contained a toggle  switch to select either neuron 0 or neuron 1 for input from a DAC

((iigittll-t(~-:ill:ll(~~  converter) output from the colnputer.

Atcst program was wlittcl~i  llC;l:il~~.Ll:l{~e  witha bout  27001il~es(~ fc(~(le”  which

focuses on the testing of the mijor  analog and digital components of the neural

network chips by performing four tcsls: neuron, output buffer, syntipse-ncLlron,  an(i

memory tests. We(icscribcthcse  tests in fLlr[llcrdctail.
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3.3.1 Ncuronrl’cst

In the neuron test, the tr:i}~sil]l]~ccl[itlce  transfer function of the neuron was

mcasurtxi.  Only ncLiron 0 and nmmn  1 were tested, since they were the only neurons

tll:]tl~:i(iextcl”l~:il  inputs. A\’(~lt:lge  fr(ll~l  ac(J1ll]Jtltel-  cO1~tl(J1le(i  IIACwas connecte(lto

the neuron input through a resistor. When this voltage was ramped, the neuron was

swept with a current input in the ral]ge of -400” tnA to +400 mA. The output voltage

was measured for each of the 800” DA{: voltagl. steps and ranged from () to 8 volts.

l’llcrcsL)ltillg  clll+ve sll(lLll(l  lc])lcscllt  asigmoidal fllllctiollc c[ltclc(iat  acLll”relltil  lput(Jf

omA and an output voltage of4volts(V(id /2). Since the neuron output voltage

could only bc mcasure(l  through the output  buffrr, the tlilllsfclftltlcti(~lls  of the neuron

:Ild the OLltpllt  bllffC~  WCI”C CollV()]Llt C(~ to prodLICC  thC l“e Sll]t.

3.3.2 ~ll~]llJf ]\llffC~’]’CSt

The output buffer test checked whether t{m buffer’s oLltpLlt  voltage fo]]owed the

input voltage. “I’llcllllllti}>  lcxcrtll:it  sclccts  the i11]311(totl]coLlt1311t”  buffer wasswitchcd

over to a pin on the chip such that fin external voltage could be applied. ‘1’hen,  the

output voltage wasmcasured  wllilcswcc]>illgtl~l.  input voltapefromO  to 8 volts. The

output shoul(i increase linearly with the inpLlt  voltage, Since all of the neural network’s

outputs nlLlst pass through this buffer, it is the nmt critical component, representing a

single point failllrC  lllcclli~llislll  fort llccllil>.
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3.3.3 syllapsc-Neuron Tcsl

‘1’he sy]l~i])sc-]lcllto]l  test  examined all the 532 syn;lpses ad 31 of the 32

neurons. Ihwh test involved one sylla~)sc-llelll”oll  pair where the oLltpLlt mu-rent of each

of the syn:lpses was swept by ]>)”ogl”~il~~l~~il~g  tlmn from -63 to +-63 and measuring the

volttige output from the corresponding neuron. IIlputs to all the synapses originated

from neuron zero, either directly as for the syntq)ses  on row mm or indirectly through

a synapse-neuron p:lir. When a synapse in a particular row is being tested, the neuron

in that row must lMVC a sLlfficiemly  high outp~]t  volt:lge to supply current into the

Sympsc. ‘1’bus, tllec(~ll”es]>(lil(litlg  synapse in row () must provide an appropriate inpLlt

current to th;lt neuron 10 force its output high. For syn:y>ses  in row 0, neuron 0 is

forced high by its cxtcrnti]  cLlrrcmt input, All the other LInuscd  synapses were

progmmmcdto  mroto clilllill[ltc  tllcil”  effects. ‘1’he results of this synapse-neuron test

were a1mly7.c(l in two w:iys.

l~irst,  all the volt:igc responses from the neurons were graphically displayed,

which allowed us to visually inspect the dcgrwlation  of [ill of the 532 synapses.

Without radiation, dl the curves were sigmoidal in shape (as in the neuron test) ml

ccntcmi  tit a synapse DAC value of zero. Statistical vilriations in fttbrication were

evident as all (I1c 532 syniipses SI1OWC(1 slightly \:lrie(l sigmoidal curves. The synapses

inmwo  also showc(i offset curves since neuron  oiv:lsc  xtclllzllly[~  iasc(i.

Sccon(i, to quantify our obscrviltions,  a “lllollot(lllicit}’””  lest was (icvisc(i.  Ill

this test, e:lch point on the syn;lpse sigmoi(id  cLIrvc was compweci  with the next more
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p(Jsitive p(Jillt  tcJsecif  tllellclll”oll  oulpLlt  voltage w:islll(~llotollic:llly  i[lcl.easitlg.” Errors

were coun(c(i  as any poir of points that

cllipsilliti:il  lyll:l(i ll(~lllollolollici  tyerl”ors.

‘1’hc synapses were Controllc(l”

were not ll~c)l~(~tollic:~lly  increasitlg.  All the

through othcl” neurons at the input and

convoluted through other circuits at the output, mi tl~cl-cfore,  were the hardest

components to test. ‘I”hcsc curves showed tile ra(iiation effects not only on the

synapse sbut (~tltlle lletlr()lls,  tlleg:lill-c(~lltl"  ()lcil"~llits,  zill(l tllcoLlt]~LltbLlffer.

3.3.4 Mcmorytest

~’l~clllclllotytcst  wasperformcd  tocv:illlzi[ctllc(ligit:ll memory in all the 532

synapses, where each synapse memory was organized as a randomly accessible 7-bit

word with a lo-bit address. “l”hc memory lest consiskxi  of lwo tests: a standard “all

values” memory test which verified if correct  vtilues wem written to the chosen

memory locations; and h walking-ones memory test which verified if the correct

IIlctlloryloc:ttiolls  were I>cillg:l(i(ll.cssc(l.

The Stan(iar(i  “all values” memory test wrote and read all 128 values

(-63... -(),+ ()... +63) f(Jrc:icll () ftllc532syll:ll>  ticlllclll(Jlyw  ()l(ls with someattcmptto

test memory addressing functimllity  as well. Errors were counted as a mismatch

bctwccn thevaluewrittcn  :lll(ltllc v:illlc lc:l(lf l”(>l~lc:tcll  ofthc  synapses.

In the walking-ones memory test, a background pat(crn (e.g. 0101010)” was

written  to all of the synaptic memory a(ldrcsscs, while a forcj!,roun(l  pattern which was
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the complement of the background pattern Wiis  written to onc a(idress.  All the

addresses were then rca(i back to detect if any of the patlcrns  were written to an

inappropriate memory a(idrcss. The fot-cgroutd  pattern was written to all of the

synapse memories in succession. ‘J’his exhaus(ivcly  tested for errors in the mcmmy

addrcssins circuits,

Although there arc 492 unused memory addresses (out of the 32x32 matrix),

both of the memory tests still it~clLl(icd them in [i]c testing to confirm ti~at  they had no

effect on the rcai memory iocat  i ons. The total number of errors ami tile totai errors by

row and colu]ml were rccordc(l. in a(i(iition,  if illl(l wilcn  Crrf)rs (icvclopcd  for either of

the tests, the first 200” crmneous results were rccordml so that the errors in the

individLuil  bits of the wmi could bc analyzed.

3.4 Nailure Mocles

Since the cilips  could faii in a number of different ways, wc had to develop a

criteria of functionality an(i faiiurc for tile cilip as a wimic. l’hc chip was considered to

bc ]lollf~lllclioll:ll”  if any of the following ocmrfc(i: tile cilip consumcti  over 200” mA

witi] an 8 voit power supply (1.6 Watts); the analog performance was so distorted

(signwi(ial  curves from the neuron and synai>sc.  neuron tests) as to make it unusable as

a neural  network; or 80% of tile total memory lM1 failed. in most of the experiments,

the chips im(i latcilcd-ui>  (iuring exposLlrc or (iuring testing,, cxccc(iing  the power linli~

and were untcstab]c  an(i hence. dcclarc(i  llollfllllcti(lllal.
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chapter 4

Results

“1’hc most significant observation from all of the r:iciiation experiments was that

tllcl~iasc(l clli]~s  (legt~lclecl  at least an ordcrof IIl:lgllitll(le  f:lstcl’tll:ill  theunbiasedmes.

‘1’lleclllllLll:ilivc{iosc  fortim  unbiased chips wcr(’ 140 kfii(is for the electron radiation,

25() krticis f(Jr[l~c g:\llllll[l  l:l(iititi(~ll,  atlci44()k ril(isf (J1ti~e1~l(~t()1~  ra(iiation.  Tilebi  ased

chips IIa(i  lowcl.c  llllllll:i[i~  ’c(i[)scs  of 6 kra(is  forlhcclcclron  ra(iiation,7.5 kra(isfortlle

l(~wcloseltltc(().1  l":l(i/scc)  g:illllllti  ra(iiilli(Jll,  5kl:i(is f()ltl]cl ligll(l()scr  atc(5()ra(i/sec)

galllllla ~t(li:itioll,:  lll(i  30kl”:l(isforpl”tJt(Jll”  radiation. We shal] lookat  the(iegrdation

of the neural network electronic hardware  in more dctai  I for cacil of the three types of

radiation, first for the unbiastxi chips and Iilcll  fol the biase(i chips.

4.1 Unbiased Chips

“1’ilc clcc(ron miiation  wiii be discusse{i  first, foliowc(i b y  t h e  gamma and

proton ra(iiations. Since similar (icgra(ia(ion charac[eris[ics WIcrc observed for all tilree

rdiation  sources, only figures, showing tile  eff’txxs  of radiation on synapse-neurons,

neurons () an(i 1, tile output buffer, monotonicity  errors, an(i memory errors, for the

electron radiation m included as an example.
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l;igures  3.1a and 3.1 b show for the tllrec radiation exposures the percent

monotonicity  errors versus total radiation [iosc and annealing time, respectively. In

Figures 3.2a an(i 3.2b, the percent memory errors from the slanciar(i memory test are

silown ag:iin for the totai miiation  (iose and anncaiing  t i m e . Tile results of the

waiking-ones mcmorytcst  arc silown in I:igLu.es  3.3a and 3.3b. “1’i]cse figures not only

allow us to see tile i]miware  (icgradation  as wili be (iiscussc(i in tile next sections, but

also to compare tile ra(liat  ion effects from the di ffcrcnt  sources as will be (iescribed  in

tile next Cilap(cl”.

4.1.1 Electron Radiafion

Witil eicctron  ra(iiation,  tile unbiase(i chip IIa(i no noticeable sign of any

radiation effects up to 20 kmis, Figure 4. la SI)OWS  the 532 synapse-neLlron baseline

characteristics at () kra(is.

“1’hc output buffer test at 30 kra(is silowe(i  initiai signs of a (distortion (“kink”) at

ti]c higi] cmi where tile  input voltage was about 7 volts an(i tile output voltage was 6.75

volts. Just bcyon(i timt point, the oLltput  voltage su(i(icnly  incrcasc(i  more mpi(iiy  tilan

tile input voltage. Figure 4.4 silows this “kink” in (I1c output buffer cilaracteristics.

“1’i]is  coui(i  be seen in ali the tests inclu(iing  the neuron tests an(i the sy]l:i~>sc-llcllrotl

test, since tile output voltage was aiways mcasurc(i  via (he output buffer.

‘I’llc IlctIIOIIsoa  II (l” l,;il](i tilcsy]]:ipsc-]  lcl]]()]]c Lll-vcs~liit  lcgtillt  ()sll()wsliglltly

stccpcr (higi]cr gain) sigmoi(iai  curves witil a l% l]]()]l(~t()]~icitycrl(~r  tit 40 kra(is. Illis
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can be obscrvc{i  in Figure 4.2 an(i 4.3, showing the neuron  () anti 1 characteristics,

respectively, an(i in l:igurc 4.lb,  showing the 532 sj’IliiIJse-IlctII”c)iI  characteristics at 40

kmis. in a(i(iition,  the “kink’’from the output buffer grew iargcran(i  was definitely

observable in al] of the curves.

At Sokra(is,  ali the sigmoid:il  curves sht)we(i  noticcab]c  steeper slopes, and in

a(i(iition, showed at) 11% monotonici(y  error (i~igure 3.la).  Some of the sigmoidal

curve sat 60kra(isof  total (iosein tllesyllll]lse-llctlt.(~11  plot (I:ip,urc4.1c)  startcci  to shift

to the lcf[ with a 30% lnonotonicity  error. lnstca(i  of having the signmi(ial curve

ccntere(i at the input synaptic weight of (), they were ccntcmi  at a negative synaptic

weight wtluc. ‘]’his  means that the neurons were fermi high at earlier (lower than

nomai) input synaptic weight v:llue.

As  the  cumula t ive  (iosc was incrcase(i to 70 kra(is an(i tiv.m to 80 krads,

illcrcasillg  slliftstotllclcft  wcrcnoticcci  (llelllollstlll-l]illgo]l”  earlier) as shown in Figure

4.l(i.  Monotonicity  errors similarly increasc(i from 48% at 70 kiwis to 56% at 80

kra(is (Figure 3.la). Some curves were shifte(i  to such at) extreme extent that the

neurons wcrciil\v:iys  f()rcc(i lligll, sll()wiIlg 21111:lxil1311111 cJLltpllt voitagcofllvo]ts  (V(id),

rcsultingin  aflat lincat  8 volts, instead ofa signmi(ial shapcc icurve.

At 100 kra(is, in a(i(iition  to the flatness in the syII:iJ)sc-IIctIr(JII  curves (Figure

4,1c), ti)c monotonicity  cmrs increasc(i  to 6 4 % . At this point, the miiation

experiment was temporarily tcrminatc(i  an(i tl~e chip was left to anneal at room

tcmpcra(ure  ovcrni:ht. After about 13 hours of annealing, a fcw of the synapses and
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neurons had partially rccovcre(i. Tile sigmoi(ial  curves were shifting back m tile right

and rc(iucingthc  l~lollotol~icitycrl(~rs  back to 58% (l:igurc  3.la).  however, there was

practically no change  in the slope of the neuron and syil:lpsc-])cl]l(~ll  trmsfer  curves and

the “kink” at IIN high end for the output buffer.

l;ur(hcr,  total (iose incwasc to 135 kra(isrcsuitcxi  in similar but nmre(iamage.

Mf~llot(~llicitycrrors”  incrcaseci  from(il% at llokra(is  to 72% at 120 krads, at which

point tileylclllaillc(is [itl]r:ltc(i  (flattcnc(i out) upto 135 kra(is as shown in F’igure3.la.

i n  Figure 4.lf, ti]c 5 3 2  s~~]l:~psc-]lctll(~]l clwactcristics  aI 1 2 0  kra(is are  silown.

Memory errors s[artcd to (ievelop witil 11% aI 120 kra(is and reaching 27% at 135

kra[is for the stan(iard memory test (Fifure 3.2a). I:or the walking-ones memmy test,

ti~crc were 7% errors at 120 kmis, which incl  casc(i  gra(iuali  y to 48% at 135 krads

(Figure 3,3a).

At the finai dose of 140 krads, more than 75% of tile synapse-neuron

cilaractcristic  curves (I;igure 4.1 g] were flat (neurons fully turne(i on). The

monotonicity  errors rcache(i a maxinlum  of 74~ where the stan(iar(i and walking-ones

memory tests rcaciwi  29% an(i 48%, resilcctively.

Column dcpcndcnt  errors were observed for both lIIC monotonicity  and the

Illcnlol”y  tests. ‘1’hc nmnotonici{y  errors shoucd only a siighl column  [iepcndcncy

(I:igure 4.5) where ti]e last 9 columns had 80% errors and the other columns had about

65% errors at 140 kra(is. The memory errors were mainiy limited to tile last 9

columns, reaching 50% errors for the stan(iar(i  test an(i W% errors for the walking-
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ones test at 140 krads. I;igurc 4.6 shows the mel]my  errors by column  for the standard

memory lest. Synapse memory bit 6, which is the sign bit, shoil’cd  significant errors for

both memory tests for the first 200” errors dctcctc[l.  This can bc seen in Figure 4.7.

Room tcmpcraturc annealing was done and mc[~surenmts  were taken 5 hours,

18 hours, 31 hours, 60 hours, tind 106 hours after the final rtdi:[tion  dose. After 60

hours of annealing, the walking-ones memory errors fully rccovercd  (Figure 3.3 b), but

the standard  memory (cst still showe(i 6% errors, but rmoverc(i  fully after ] 06 hours of

amc:tling  (I;igurc 3.2 b). h40mtonicity  errors rccovcrcd  only slightly to 63% after 106

hours of annealing (J:igure 3.1 b). ‘I’l~csy]~:ipse-l  )elllc~l)clllves  shifted backto  the right

during room tcmpcraturc mmcnlillg  measurements. ‘1’hcsccanbc  seen in Figures 4.lh,

4,1i, and 4.1.j for annctllitlg  m e a s u r e m e n t s  at 31 hollrs, 60 hours, and 106 hours,

rcspcctivcly.  ‘1’here were no clumges to the curves for neurons () and 1. The sigmoidal

curves continued to bc very steep and showed high g:iin. ‘]’hc output buffer also did

not recover during the annealing and the “kink”  ~lt the high cnd did not change.

4.1.2 Gamma IGMliat ion

‘1’hc unbi:iscd chip for the ,ymm radilition performc(!  without any degradation

at 20 krads, but stwtcd showing some effects al 30 kinds where sigmoidal  curves of a

fcw synapse-neurons bcfuin to turn stccpcr.

At 40 kra(ls, further stccpmss  W’:IS obsci vcd and the “kink” in the output buffer

Startc(l  to develop. ‘1’here W:IS  1 % monotonicity  cmr M shown in Figure 3.1a. As the
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dose was imrcascd 10 50 iirads,  more stccpncss  in the sigmoida] curves was seen with

2% l~~(~l~(~tollicityelrols,”  and the output buffer sllowcd ii litrgerc’kink”at thehigl  lend.

Both the neuron () and 1 curves were also showing steeper sigmoidal  characteristics

and shifting to the left.

At 60 krads,  all of the synapse-neuron cLIrves  became very steep. ‘1’hesc curves

starteti  to shift to the left at 70 kra(is, and monotonicity  errors increased to 1()%.

As the dose was increased to 80 krads,  90 krads, and 1()() krads, all the

synapse-neuron curves shifted further to the left, started losing their sigmoidal  nature,

and bccamc fiat at 8 volts (neurons always high). ‘1’he monotonicity  test showed 25%

errors at 80 krads,  37% at 90 krads, and 42% at 1 ()()

then left overnight to anneal at room tempcralurc.

krads (I:igurc 3.la).  ‘Me chip was

After over 14 hours of annealing,

there was only slight recovery as a few SyII:IpSe-IICLllsoIl  curves shifted towards the right

anti the monotonicity errors dccreascd  to 34%.

When the total dose was increased to 120 krads, 140  kl’ii(iS, an(i 160  krads,  the

left shift of the syIl:~psc-I)cLII”OII  CUIWCS continued tmi ti~c ci]aracteristics  bccamc flat.

Mmotonicity  errors incrcascd from 49% at 120 kra(is to 52% at 140 krads and then

sccmcd to saturate to 60% at dmcs greater than 160 krads. At 170 kra(is, about half of

the synapse-neumn curves were fiat.

I~r(~m 180 k~~ds to  the  fiI)[ii ~ul]~ulii[i\c  doSC of 250 krii(is, ti~c r e m a i n i n g

synapse-ncurm curves shifted to the left. Only a fcw gomi synapse-neuron curves

were seen, and the remaining curves were illi flat at 8 volls. ‘l”hc monomnicit  y errors
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reache(l  63% at 250 klHdS. h4enm-y errors started occurring at 190 kra(is with 8%

errors for both the standard (I:igure 3.2a) and walking-ones (Figure 3.3a) tests. The

memory errors, similar to the mmotonicity  errors appeared 10 increase exponentially

ml sccmcd to saturate at 30% with 250 krads of total (iosc for the standard test and at

48% with 220 krads for (hc walking-mm test. ljor both the memory tests, there were

significant errors with memory  bit 6 (sign bit) in the first 200” reported errors.

Again,

~O]llnlll  dC]X3dCI)Cy  W:IS obSCrVd  for both thC lllClllol’y [III(]  lllolKltolliCity”  teStS.

them were memory errors only in the last 9 columns for both memory tests with

50% errors for the standard test and 90% errors for the walking-ones test at 250 kinds.

Monotonicity  errors showed only slight column (Icpendcncy  because at 250 krads the

last 9 columns had 68% errors and the other columns had 55% errors.

Annealing was done at room tempcraturt.  following the final cumulative close of

250 kr~ds and the characteristics were mcasure(l  mspcctivcly  after 17, 28, 44, 52, 75,

and 115 hours of annealing.

walking-ones memory test as

After 17 hours,  tl)crc  were no errors resulting from the

shown in Figure 3.3b. ‘1’hc standard memory test also

ruxwcrcd after 28 hours of annealing (l~igurc 3,2 b). h40notonicity  errors recovered

only slightly to 49% after 115 hours of annealing (I;igurc 3.1 b). The synapse-neuron

curves  showed that some sigmoi(iai  curves had partly rccovcrcd  by shifting back to the

right. ‘1’hc stccpncss  or gain of the sigmoidal curves did not change for any of the

neurons. Similarly the “kink” in the output buff~:r was unchal~gcd.
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4.1.3 l’rolon  Radiation

For the pro[on radiation, the unbiased chip had cumulative [ioses of 5, 10, 20,

80, 11 (), 150, 200,”280, N(I 440 kr:i(ls. The chip petformcd  without any noticeable

degradation or miiation  effects up to 20 krads.

At the next level of total dose (80 kr;icis)  measurement, the output buffer

showcxi a “kink”  which wtis observable in aii tile  curves. Also, the sigmoi(ial  curves for

all the neurons became stmpcr, an(i them wm 2% nmnotonicit  y errors (Figure 3.1a).

“1’hc curve stccpncss  further incmase(i at 110 kra(is with 23% m(motonicity

errors. ‘1’he left shift of the syl~:il>sc-l~ctlroll  curves s[:ir(cci at 150 kra(is causing

mmotonicity  errors to increase to 58%.

At 200” kra(is, most of the synapse-ncuI  on curves were flat at 8 volts (being

shiftc(i  to the extrmc left and having the neurons fully turmi 0]1). There were 86%

monotonicity  errors. hkmory  CITO1”S  a]S() (iCVCk)J3C(l. ‘i’he stamitir(i  menmy  t e s t

showcxi 21 % errors (Figure 3.2n), anti  the walking-ones test showe(i 28% errors

(Figure 3.%).

At 280 kra(is, with a lnonotonici(y  crrol of 90%, lllost of the Syll:lpSC-llf3LlrOll

curves were flat at 8 volts mi only a very fcw curves still ha(i a sigmoi(ial  silape.

There were 86% mmory  errors for the stanciiird  lest an(i 76% memory errors for the

walking-ones test. All tllc syn:iptic  memory bits iM(i eqwil  nulnbcr  of errors witilin  the

first 200” errors rcportc(i.
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‘1’he monoionicity  and memory Icsts botl] shom’cd column dependency of the

errors. ‘1’hc monotonicity  errors showed only a slight dcpemicncy  as the number of

errors rcflcctcd (IIC column number that the synapse was located at. Thus, the last 9

columns, where there were 31 synapses, had mom errors that]  the other columns. The

memory errors started for the last 9 columns at a dose of 2.()() krads while the other

c(llllllllls llti(icrr(lrs st:il”tillg:lt  ~i(l(~se(~f280kl”:i(ls.

At the final cumulative dose of 440 kra(is, the chip was fully nonfunctional and

could not bc testc(l dLm to excessive power consumption. ‘I’hcc hip was left to anneal

at room temperature. ]Iowcvcr, even aftcr200° hours of allmaling,  the chip was still

drawing toomuch  pow’crlo[>ctestc(l.”
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4.2 l;iased Chips

proton

neuron

6.3 for

All the biased chips, exposed to electron, gamma (low or high dose rate), or

radiations, showed no ch:inge in the shape of the sigmoidal  curves

() and 1 Icsts for any of the cumulative doses. This is shown in I;igure

the electron  radiation and in Figure 7.2 :ind 7.3 for the low dose rate

for the

6.2 and

gamma

radiation. ‘1’his indicates that there was no degmlation  or radiation effect to the neuron

circuit itself. ~’he neuron 1 test, however, showt:d the sigmoidal curve shifting slightly

to the left as the cumulative radiation dose incmascd. Since neuron 1 also has input

current col~lillgfr(~l~l(~l~c  synapse, the left shift maybe attributed to the]eakagecurrent

colllillgfr(~llltl~tit sytlapse  tisit(legr;i(le{l  Ivitllrti(li:itioll.

Thcoutput  buffcrtcst  also showed no change in the lillc:ilityt  >etweell  the input

and output voltages as the cumulative radiation dose was incrcascd for all the biased

chips. I:igurc6.4and  7.4 show the output l)~lff~`r  cll:ir:lctcristics fr(Jlll tlleelcctrollalld

gamma (low dose rate) radiation experiments. ‘1’bus, the main degradation for the

biased chips was from the synapses where  the sy[ltipse-l]clitol~  curves showed a left

shift.

chips.

Room temperature annealing was done following exposure for all the biased

The synapse-neuron curves did not show any annealing even after 100 hours,

and the monotonicity  errors remained unchanged, “1’hc  p e r c e n t  monotonicity  errors

during annealing is shown in I:igure  S,lb  for all the biased chips under the three

different radifition sources. ‘1’here was some variation to [he monotonicity  errors as the
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electron mdiation,  followed by gamma radiation at low and high dose rates and proton

radiation. l~igurcs are only provided for the electron and low (lose rate gamma

radiat ions .  “l-he  (~tllc]”r:i(ii:iti(~i]  sources showe~i  simil~ireffccts  as can be compared in

Figures S.lti, 5.2a, an(i 5.3a where the percent monotonicity errors, percent memoly

errors, and pcrccnt  wal ki rig-ones memory errors versus total mdiation  dose,

respectively, arc silown.

4.2.1 Electron Radiation

The 532 sJ’]I:Ipsc-IlcLII”(}I~ characteristics of the chip at () kmis is shown in

Figure 6.1 a “1’hc chip pcrformc(i without any effects when tested at 2 kmis. The

symipse-neuron ctirves bccamc steeper an(i shiftc(i  to the lefl M exhibited in Figure

6.1 b, causing 1 6 %  nlonotonicity  errors (Fipure 5.1a) at 4 krads. With 70%

mono[micity  errors at 5 kra(is, most of tile syllii]~sc-llcllroll  curves (Figure 6.1 c) were

fiat at 8 volts (neurons output iligb) for all the input synapse weight  values. Only a few

synapse-neuron curves  sliil  showed a sifmoidal  curve. For both the 4 kra(i  and 5 krad

(ioscs, tilcrc were no memory errors for either tile Stilll(iill’(i  (Figure 5.2a) or the

walking-ones (I;igure  5.3a) tests.

Finaily, at 6 kra(is, tile cilip iatchc(i-up  an(i (ircw excessive power (iuring the

synapse-neuron an(i monotonicity  tests. h4cmo1  y tests were still able to be pcrfomed

and silowe(i that there were 26% errors for the stan(iarci test an(i 22% for tile walking-
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ones test. Iiigurc6.7  reveals that tllesyll:lj)se  lllcl)lorybit 0 showed significant errors in

the first 200 errors reporte(i.

lloth tilclll(lllot(~llicity  :lll(il  llclllolytcsts”  llti(icoilllllll(  lcpcll(iellcya  sp(~rtrayed

in l:igurcs  6.5 and 6.6, rcspcctivcly. ];or example, at 4 kiwis, monotonicity  errors

rdnge(i from about 40% in tl)e first few colunms to 78% in tile last few columns.

Memory errors at 6 krads occurre(i  significantly only in tiw last 9 columns.

4.2.2 Galllll]a I<acliatiol~ (I.o\\’d[)scratc)

l:ortilcg:tll~lll:~r  a(ii;~tioll”  witil  tiw low dose rtite (().1 ra(i/see), the biase(i  cilip

lmi c u m u l a t i v e  (ioses of 6, 7, an(i 7.5 kra(is. ]:igurc 7.la silows tile i n i t i a l

characteristics of the syil:iI)sc-IletII”()])  curves witl~ no r:i(iiation  exposure. After the first

ra(iiation  (iose of 6 kra(ls,  the chip alrmiy  statte(i  to si)ow some (iegrwiation  in the

Syll:)]>SC-llCLll”oll  CU1’VCS  ( F i g u r e  7.lb) iill(i  tilC  llICINOI”Y  tCSt S . ‘1’here were 5%

monotonicity  errors (Figure S.l:i) (iue to tile sy]i~l]>se-llclllc)ll  curves becoming steeper

an(i shifting to the left. ‘1’hc standar(i mmorytcst (I;i~urc 5.2a) ha(i 28% errors, ami

thewalking-onestest  (Figure 5,3a) ha(i 48%errors.

Thcscra (iiationeffects  increase(i  at 7 kra(is showing 15% lllollot(~llicityerrors,

51 % errors for the stamiar(i memory test, an(i 71 % errors for the walking-ones memory

test, “1’he syll:i]>se-]~cllloi]  curves are shown in Figure 7.Ic.  At the final (iose of 7.5

kra(is,  more sy]l:tpsc-llctllo]l curves ila(i shifte(l  to the Icft [Figure 7.l(i) with 23%

llloll(~t(lllicit  ycl”l.(ll”s.  ‘I’llelllclll(~  l.~’el”l.ors  increasc(i as well to 60% for the slan(iard test
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an(l 78% for the walking-ones test. The sign bit (bit 6) for the synapse memory

showed significant errors in both the tests forthc first 200 reported errors. This can be

SCCn in Figure  7.7. Mcnmrybit  ott]sohii(l” somccrrms.

Co] umn dcpcnden[  errors were observed for both the monotonicit  y and mcnmy

tests ill Figllrcs 7.5 and 7.6, respectively. The  colLInm  dcpcndcncy  was less

pl”ollol]]lcc(Iil  ltllell lol)ototlicitytest  wllclet  lleeirolsr~ll  ge(ifl.ol)l” 10% inthe first few

colunlns  to 27(% in the last fcw columns. “1’here were more memory errors in the last 9

columns showing  83% errors for the standard test and 90% mom forthc walking-ones

tcstcomparcd  to 30(%cl”rol.sfo  rtllest:ltl(l:ir(l  test and 47% errors for the walking-ones

test in the other columns at 7.5 krads. “i’he firsl 5 columnsdi(i  not have anymemmy

errors .

4.2.3 Galll]lla  l{a[liatioll (lligl]  (lose rate)

];or the high dose rate (50 tad/see) ymma radiation, the biased chip had

cumulative (ioscs of 4, 5, and 6 krads. At 4 krads, the chip did not show any signs of

degradation. Syll:~~)sc-llclIlo]l  mrvcs  slarlcd shifting left and becoming steeper at 5

krads  with 12% monotmicity  errors, There were 4% errors for the standard mcnmy

test and 23% errors for the walking-ones lest,

At the final dose of 6 krads,  the chip was Ilollfllllctioll:il”  duc to excessive power

CollSLllllptioll”  and Ilo tests  Collki  bc rllll. After 7 hours of room temperature annealing,

the power consumption of the chip decreased. The syIl:Ipsc-IlcLIIOII  cwves showed



significant left shift with 31 % mono(onicit  y errors. The standard memory tests showed

47% errors, and the walking-ones memory test showed 58% errors. Memory bits O, 5,

and 6 (sign bit) of the synapse showed errors for both memory tests in the first 200

erroneous results.

No memory errors occurred in the first 9 columns but the other colLmm

sll(~wc(l  crrorsi llcl’c:~sillg  with their column numlw. ‘his column dependency was also

observed in the monotonicity  test where the errors ranged from about 1 ()% in the lower

numbcretl  columns to about 35% in the higher numbcre(i  columns.

4.2.4 l’roton Rad id ion

For the proton radiation, the biased chip performed well at 1 and 3 Imds,  and

there were no signs of degradation. “1’hc  shape of syIlzipsc-IlclII()]]  curves showed only

a slight change by starting to become  steeper at 6, 8, 10,  aII(l 15 krads. The

monotonicity  error was still insignificant at 15 Iirads  (().1% errors) since the synapse-

ncuron  c u r v e s  s t i l l  m a i n t a i n e d  t h e i r  sigmoidal  shape,  without any  left shift.

I:urthcrmore,  no memory errors were measured for both [he standtird and walking-ones

tests.

“l-he  cLlnlulativc  dose was then doubled to 30 kra(is, when the chip became

nonfunctional by latching-up and cxccc(iing  the current limit. None of the tests could

be performed and no curves could be drawn. 1 lvcn after 1()() hours of annealing time
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the chip continued [() bc l~ollftlllctio]l:~l”  an(l ]Mi excessive power consumption. Thus,

the biased chip wils~iii]~~ilgc(lvcry  severely with30  kriidsofprotm  radiation.
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Chapter 5

Discussion

MOS transistors were originally thougl It to be radi:ltion-hard  because their

transfer characteristics did nOt depend On minority  carrier lifetime [ 1 1]. (Minority

carrier lifetime is (he most radiation-sensitive material p:iramc(cr an(i the main cause of

rd(litlti(~ll-i  tl(illce(l  failure in bipolar tuinsistors.)  1 lowever,  this optimism was proven to

be ill foudcd.  1301h n-IJf+T ml p-};~l’l’  (Icviccs  were found to be very sensitive to

imizing  rdiatiml  resulting in lil~~~ chungcs  in threshold voltage and tr:il~scoll(illctailce.

ionizing ra(iiiition  causes detrimental effects on the charactcris[ics  of FET

dcviccs  mi circuits. l’he threshokl  voltages,  current  (iriving capabilities, an(i leakage

currents  of transistors change  as a function of a number of factors: the total (lose of

radiation received an(i its energy; the bias voltages applie(i  during the irra(iiatioll; the

geometry, type, an(i method of Fabrication  of the transistor;  the (iosc rate at which the

ra(iiation  is (iclivcrc(i;  the tcmpcratLlre  (iuring the irra(iiati(m; the bias, time, and

temperatLlrc after the irra(iiation is completed [ 111. changes  in tile properties of the

(icviccs can lead to significant changes in the characteristics of the integratc(i  circuits of

which they arc the primary elements.

The response of intcgrate(i  circuits may be un(icrst(xx] in terms of the combined

msp(msc of the in(livi(iual transistors [ 11 ]. 1 lowevcr, in co]nillex circuits such as the
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artificial neural network chip, the analysis can bc difficult because of the large number

of possible bias configurations and circuit paths.

Tl]eresultsoftlle7  different neural IIetvorkcl  lipsascl  cscl”ibe(lil  ltlleprevious

chapter will be collated here, <Ill: ilyziilg tlle(liffelcllces  between the biased and unbiased

chips, the effects from the three different radiation sources, and comparing the two

dose rntes used on the biase(i  chips ~l]l(lcl. g;ltllj~l:i  fil(iiati(~l~.  Also, tbedegradation  and

annealing behavior of the chips will be examinc(i  in more dc[ai  1.

5.1 Biasecl vs. Unbiasec]

]n ad(iition to tbe biasc(i  chips degrading more severely with less miiation  as

compared to the unbiased chips, tberc were other (iiffcrcnccs  observeci. For the

unbiased chips, there were ra(iiation effects to the neuron circuit as observe(i  in the

neuron () ami neuron 1 tests. ‘1’ilc sigmoi(ial  curie of tbc neuron became stccperas  tbe

radiation dose was increased, while the unbiase(i chips showe(i no changes. 130tb chips

did, however, show thcs light left shift of tbesiglnoidal  curvein  the neuron 1 test.

Also, there were differences in the performance of tbc output buffer in the

unbiase(i an(i biased chips. Wbilcthc  biascdcbips  (ii(i  not show :illy(iegr:i(iati(~ll,  the

unbiasc(i chips sbowe(i a “kink” whcretheoulput  vo]tagc was not a ]inear function of

the input voltage.

Filltllly, tllc:lllllei~lillg  llcll:lviol’of  tbccbips  aftcrthc final mmulativedose  was

different. ‘1’ilc unbiased chips showc(i partial mcovcry  with room temperature
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annealing while the biased chips did not show :iny significant recovery. For example,

the synapse memory for the unbiased chips ill the electron and gamma radiations

rccovcred  fully. The syll:lpsc-llellrollcllrves  also showed recovery for those unbiased

chipsas  some of thcdamaged  sigmoidal shaped curves shifted back to the right. For

tllebiasecl  chips,  tl~ct”e  was(~llly asligllt  cll:~]lge  illtlle s~~lltipse-llcllr(~  tlcu1wesat~d  in the

memory errors.

]onizing radiation causes significant changes in the. characteristics of FET

devices due to surfdcccffccts  [11]. The IIltljorlllecll:il]isl]l  of dcgra(iation  is due to the

creation of oxide-trapped charge caused by r:t(li:ltioll-il](lllce(l  positive charge buildup in

the gate-oxide region. loniz,ing  raditition also causes sutface  states (or interfidce  traps)

at the Si/Si02  interface. Oxide-trapped charge causes a negative shift in transistor

threshold voltages; interface traps cause a decreased sub[hreshold  slope in trmsistors.

The electric ficki applied across the oxide in a 171;’1’  device during irradiation has a

dominant effect on the ra(iiation damage intro duce(i. Positive fickis (positive bias

voltage applie(i  to the gate electmie)  cause the vorst-case (iamagc.

q“i~resho](i  voltage shifts for both n-1~1~’1’  and p-l;IH’ (icvices thus (iepenci  upon

the bias applie(i (iuring irradiation: the voltage applie(i  to the gate electmie  has a first-

or(icr effect, mi tile voltii~e  applie(i  to the sotlrce an(i (irain can also be significant

111 J. TiIc p-l:llrl’ threshoki  typically shifts Illollotollic:llly  negative as the total dose is

increase(i. The n-I~IIT thrcshoki  response can be more conlplicatc(i,  shifting in the

negative (iirection  initially an(i, as the total (iosc incrcascs, twcntually  turning around
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and shifting in the positive direction as the compensation of oxide-trapped charge by

interface trap charge  becon~es  nmre inlpor(ant.

The par~ of an MOS structure most sensitive to ionizing radiation is the Oxide

insulating layer. When ionizing radiation passes through the oxide, the energy

deposited creates electron/hole pairs by breakin! silicon-oxygen b(m(ls [11]. Sonle of

the rti(liati(J1l-ill(lLlcc(l  charge carriers rccombinc, whereas nlost of them drift in the

applie(i electric field, towar(i the :ippropriate  clcctrodc  (gate or silicon substrate).

Because of their higher mobility, electrons rapi(ily (irift toward  the gate which is

the positive electrode and flow into the external circuit [ 11 j. Since themal]y  grown

oxides have low c(~llcelltt”:ltiolls  of electron traps, ncady  all the electrons exit the oxide

region.

The holes that escape initial rec(~llll)ill:ltit)ll  are relatively inmobile and mmin

behind mm their point of generation, causing negative voltage shifts in the electrical

characteristics of I: Ii’l’ devices [ 1 1]. } lowever,  over a period of time, the boles undergo

a rather anomalous stochastic hopping transport throu~,h the oxide in response to any

electric fields present. This hole transport process, which is very dispersive in time,

gives rise to a short-term, transienl  recovery in the voltage shift. It is sensitive to many

variables including primarily applied field, tenl]~craturc, and oxide thickness. upon

reaching the Si/SiOz interface, some of them arc capture(i  in long-term trapping sites

(the hole trap distribution usua]ly extends a few r]anomctcrs  from the Si/Si02 interfidce),

and cause  a remnant negative voltage shift that is not sensitive to the silicon surface
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potential and which can persist in time from houm to years. ‘J’he holes trapped at this

intcrfwe have a much larger effect on the vo]tafc shifts than those trapped at the gate

elcctmlc  interface. “]’his long-lived Hi(ii:iti(lll-illclllce(l  volta:c  shift component is the

most coll~l]lolllyobserve(l  f(~rl~lofr:~(liatioll”  damge and is very sensitive to the electric

field and temperature.

The oxi(]e trapped ch(irges anneal (recombine) on a linear basis with a

log:iritlllllictilllescale  [111. ‘1’hc annealing slopes are lincady  dependent on absolute

tcmpcrat  ure. A tunneling process h:is been hylmthcsiz.cd to bc responsible for long-

tcl.lll:lilllci~  lillg,  asu’ell :isf(~rtllccvclltll:il  s:ltllr:lti()ll  lll:lgllitll(lc  f()rt)xi(le  charges.

When silicol) istllcrlll[llly  (lxi(liz.c(l,  tllc  intcrfidccbclwccn  the amorphous oxide

and the crystalline silicon is gcncr:illy dcficicnt  in oxygen (or abundant in silicon),

giving  risctos tr:~illcCi:lsm’cll  [lstlllcolllplctc(l,(~l  “dangling,” silicon bonds [ 11]. These

dangling bonds act as inlcrfacc  traps with energy levels within the forbi(klen ban(lgap  at

the SiOJSi  interface. Ilcfore irradiation, the areal density of interfidce traps in a

proccsscd F13T dcvicc  is in the rmge  of 109-101°” traps/cln~ which nornlally are not

nlllch of a  problcnl. When the FErl’ devices are exposed to ionizing ruiiation,

ad(iitional interface traps can bc gcncra[c(i  i(t the SiOJSi  intcrfi~ce, resulting in

discernible and often dctrimcntitl  effects in dcviccs. In addition, othcrtypcs  of stress,

including avalanche electron or hole injection aId high-field stressing, are also known

to create intcrfnce  traps at the oxi(le-scl]licoll(lllct(  ~l.” illtcrfacc.  Annealing  Of intelface
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traps (ioes not occur at normal operating tcmpelatures except with very high densities

of interface traps.

5.2 Effects of Different Racliation Sources

The three types of radiation, electron, p.anlma, and proton, showed different

effects and degl”adation  on the chips w]let]ler~lllllitlse(l  01” biased. A summary Of thW

differences will bcsttlte(i,  fil"stf(Jr tlle~lll\]itisc(l  cllips:tll(l  thcnfort hebiasedc  hips.

5.2.1 LJnbiased  Chips

Electron radiation for the unbiased chip was the first to c:iuse any damage  and

can bc observed in the monot(micity  test wherr errors startc(l occurring  at 40 krads

(Figure 3.1 a in chapter  4) and in the memory test where errors startc(i occurring at 120

k~~ds (I~igure3.2a  and  3.3ii). “1’he’’kink”in the output l~Llffcrw:isol>servecl  at a total

doseof  3()kr~l(is, tlllcitllc  slliftillg () ftllcsigll~(Ji[lill syIl:i])sc-l)clIIOII  curves was observed

at 60 krads.

The unbiased chip having under~.onc  gamma radiatiol-l  was next to demonstrate

anydamage.  7`llisctill l~c(~l]scrvc(l  illtlle ~tll:ll()p cllaractcristics  ml~el$et  l~e``ki1~k''at4O

krads (ievelopc(i in the output  buffer curve, mollotmicity errors cicvc]ope(i  at 50 kmis,

ami at 70 krads the syIl:I1>sc-IletIrcJ]l  curves startc(i shifting to tile Icft. Memory errors

startc(i (icvcloping  at 190 kra(is. Silllii:llly,tlleprotoll”  ]:i(ii:ltiollf(~rtllc  unbimxichip

also showe(i the ollsct of (iillll:lge  on tile  SyllilpSC  nmnlory at about  the same time.
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However, there were no memory errors at 150 krads, but at 200” krds there were more

memory errors for the proton radiation than for the gamma radiation, The analog

por[ion of the ncumn ~im]it  for the proton radiation had effects starting at 80 krads.

At this dose, the “kink” developed in the output  buffer and monotonicity  errors

developed in the syl~il]>se-l]elll.ol~  curves which also s(arleci shifting at 150 krads. The

proton radiation seeme(i to cause more degradation in the luirdw:ire than the other two

types of rad i at ion. For example, at 200” krxis,  there were comparatively more

monotonicity  and memory errors.

The degradation from electron and gomma radiations secmeci to saturate

(flatten out) after the unbiased chips rcccivcd accrtain cllllltil:ttivecloseof  radiation.

Monotonicity  errors for the electron radiation saturated earlier at 120 kra(is with a

higher  error of 73% than fort lleg:tlllllltir:i(li:  itioll”  at 170 krads with a lower error of

62%. Mel~~O1.ye  rr(~l”ss atllratc(lat  tlles:ll~~e  30% foltllc st:illcl:ll(l”  test and48%  for the

walking-ones test for both clcCtron  an(i ~an]ma ril(ii:itions. Similar to the monotonicity

errors, the onset of saturation w:tse:il”lielfol”(lle  electron raciiation  than for the gamma

radiation. Proton r:idiation (iamage seenled  to saturate at a higher cumulative dose

with a larger error of 90% for the monotonicity  and mmory  tests. The onset was at

200 krads for the monotonicity  errors and at 280 krads for the memory  errors.

Post radiation anncalingof  the chips also showed differences among the three

types of m(iiationc Both the electron and gamlna  irradiated chips showed annealing

behavior, whereas for the proton radiation,  the unbiase(l chips did not show any signs
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of annealing. This might be attributed to the f~ct that the chip was severely damaged

due to the high total dose (440 krads).  The chip with ~,iil~ll~la  radizition  annealed faster

than the electron radiation. The synapse nlemory fully rccovcre(i after ] 7 hours of

annealing at room temperature for the g~imma radiation but neede(i at least 100 hours

for the chips that underwent electron radiation (1 ~igures 3.2b and 3.3 b). This was also

observed in the syll:lpsc-llcLll”(Jll  ctll”ves  and in the monotonici(y  test (Figure 3.lb).  To

summarize, the electron radiation was the first [o cause any damage on the unbiased

chips; the proton radiation was the last to cause my damage, but the (iamage  was more

severe; and the gamma radiation showed faster annealing.

5.2.2 Biased Chips

Similar radiation effects were observe(i  for the biase(i  chips expose~i to electron

an(i gamma ra(i i at i ons. l:or example, electron ra(iiation wouki  show analog failures

such as nlonotonicityerrom  (Figure 5.la in Chaptcr4)  an(i shifting of synapse-neuron

curves 1 krad ear]icr than the gamma radiation, whereas the gamma radiation would

show digita] Pailures (Illclllol”yel”l.(lrs)  1 Iira(i earlicrthan  the electron radiation (Figures

5.2a and 5.3a). nut, both types of ra(iiation starte(i havingeffccts  aroun(i 4 krwis an(i

t~ccat~le  ll(~llfllllctioll;  ll:ll(~Lll~(i7  kra(is. Alll~c:ili!~g  l>clla\~i()r  w:lssill~il:il'  t(~tlletltlbiase(i

chips where gamma ra(iiation anneale(i slightly fdster an(i better than the electron

rta(iiation (Figures 5. lb, 5.2b,  an(i 5.3 b).
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The chips with proton radiation, however, showed significant difference in

degradation. There were no radiation effects such as chanfws in the synapse-neuron

curves, monotonicity  errors, or memory errors for a cumulative dose of 15 kinds.

Again, similar to the unbiased chip, the proton radiated chip did not show any

annealing, since at 30 krads the biased chip might have suffered severe damage. Thus,

the main difference among the three types of radiation was that the proton radiation

had the least effect on the biased chip.

5.3 Dose Rates

‘1’here can be a significant dcpcn(icnce  of l;ll’l’  (icvicc response on the length of

time it takes to accumulate a given totill dose, that is on the dose rate of the rdiation

environment. “1’bus, the total rttdiation dose alone is not sufficient to specify FET

device response to a radiation cnvironnvmt  [ 11 ]. At low dose rates, the oxide-trapped

charge tends to be less and the

dose rates.

Since generally there

annealing, it is to bc expcctc(i

interface trap density greater than their values at higher

are changes in device parameters with time (iuring

that (iuring a IOJJ”  dose rate irra(iiation sinli]ar changes

wiii occur in parallel with the (ianwige  effects of the ra(iiation [ 111. ‘i’bus, the changes

in ticvice  parameters mc:isurcd  as a function of total (iose wiil (icpen(i  on tile dose rate

at which the miiation  is (iclivcrc(i,  which is tbc (iose at which it un(iergoes  a given

change in paralnctcrs. 1 ]owevcr,  by Chiil”ilCtC1’i  ~in.g the response with time after the
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completion of an irradiation, it is possible to predict in a nurnbcr of circumstances the

resp(~llseasafllllcti[~ll  of (iose rate.

At iligil  (iose rates, the response can be (ionlinatc(i by tile generation and

transport of iw]es tilrough  tile  oxi(ie, simwing  iarge negative tilresiloki voltage shifts

immcciiateiy  after a puise of ra(iiation; tiwse tilrcsi]oki shifts are miuce(i with time as

ti]e im]es  transport 10 tile interface [ 1 1]. Witil  iligil  (i me rates tilat (iciiver significant

total (iosc in a silort pcrimi of time, sixice-ci)arge  effcxts can re(iuce tile effective

electric ficki in tile oxi(ie, rc(iucing  tile yieki of lm]es wilici] esctipe recombination and

thus, re(iucing the amount of (iamage  in(iucmi  by a ra(iiation  puise of given total (iose.

‘1’ilcrc  is a re(iuction  in oxi(ie-trappe(i  charge at the lower (iose rates an(i an

increase in interface trappc(i  charge [ 11 ]. ‘1’his increase in interface traps as tile time

rate (iccrcascs is (iue to the lol]g-term buii(iup  of interface traps. In general, at high

(iose rates an(i silort times, oxi(ic-trappe(i  cilarge (iominalcs  the (icvice response ,

wi]creas at low [iose rates or iong times, intelfacu trap cilarge ten(is  to (iominale.

Two types of (iose rates were tcsteci on tile biasc(i  chips witil g a m m a

irrwiiation, OncchipiuKi  tile iligil(iose  rate of 50 ra(i/see, wi]iic the seconti cilipha(i  a

lower (ioseraleof  ().1 ra(i/scc.  ~’llereslllts,  illcc)lltl”tlst  totiletilcorctical  expectatims,

simwe(i no{iiffcrcnccs  between the(iose rates. lloth  chips starlui  (iegra(iing at about 5

kra(is anti became llo]lfllllcti(~ll[ll  at 7 kIa(is. Al]netiling  behavior was about tile same

witil tile 50ra(i/scc  (iose rate ilaving a siigi)(ly  fastcran(i  bct(er rccovcry  tilan tile iower

(lose rate of ().1 ra(l/sec  as observed in tile nlemory tests. It is iikcly that the (1OSC rate
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was not low enough, aIMi  one Imy need to evaluate characteristics at even lower dose

rates of ().()5 to ().()1 rad/scc.

5.4 Dqy”aclation

From all the radiation  testing, wc have observed dc,ga(iation  in the analog and

(iigital  portions of the neural network hardware. The analog portion iwludes the

neurons, oatput buffer, and synapses. ~’he (Iigitiil  portion is Inostly the memoly  in the

synapses. Additiomlly,  there are some supporting digital circuits. These include the

control and decoding circuits. I lowever, no rad ialion symptoms were detecteci in this

part of the circuitry. in fact, there is some evidence th~it the row selection circuit

(includil~g  a nmnory  latch that held the row a(ldrcss)  and the analog output nlultip]exer

were still functionil]g  at a very high radiation (lose, whi]c all the other components were

severely damaged. We will now discuss the radiation effects seen on the neurons,

olltpt]t  bllffcr, ad synapses.

5.4.1 Neuron

I>cspite the fact that each neuron has a few dozen transistors, they were

relatively rcliab]c  throughout most of the rxliation  tests. ]n t h e  unbiase(i cilips, tile

llCIII”OI1  SiglllOi(iill CUI”VC bCC:llllC  StCCpC1’  at (iOSCS  gl”CtltC1’ tll:ill 2 0  kra(iS. This is

c(]uivalcnt  to increasing gain of the neuron. I;or the bia$c(i  chips, there were no effects

at ali as seen from neuron  () mi neuron 1 tests. ‘1’his  might bc (iue to the low (ioses  of
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radiation (less than 20 krads)  or the biasing method. Often the characteristic of the

neuron function flattens out, orciistorts as the total radiation dose increases due to the

damage at the input end in the synapses or the output end in the output buffer.

Nevertheless, the neurons usually out-last most of the other colnponents.

S.4.2 Output  Buffer

With ra(iiation  (iamage,  the output buffer, which is a voltafy follower, usually

(ievelops a distortion or “kink” in its characteristic function at the high emi of its range.

The same “kink’> occurs at an input voltage of 7 volts an(i an output voltage of 6.75

volts for all the (ii fferent types of ra(iiation. It was obscrvc(i  only in the unbiase(i chips

with a cunlulative  radiation (iose greater than 30 kra(is, “J’his nlight also be (iue to the

fiict that the biasc(i  chips rcceivcxi  lower (ioses of radiation as exp]aine(i previously for

the neurons. All of the neural network’s output must go through this buffer and any

(iegrwiation wouki  affect the performance of the whole chip. Although the

(ievclopmcnt  of the “kink” is not entirely fatal, it I]liiy, however, interfere with the

“learning” capability of the neural network.

5.4.3 Synapse

Of all the circuits, the behavior of the Sylliipses is nlost ei~sily an(i most often

(iist urbe(i  by ra(i i at ion. They exhibit symptoms of memory failure which contributes to

t h e  (iigital  [icgrii(ii~tiol~  al](i leaki~~C  curr~llt which contributes to the analog
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degradation. The n]:~jor  (iigita] components in the neural network chip are the static

memories used within each of the 532 synapses. It was interesting to observe that the

memory failures occurred first and most often in the most populated columns of the

array (the last 9 columns numbered from 23 to 31) where there were 31 synapses per

column. ‘I’his  points out :i~~ossiblel:l(li:itic)l~  softness in the c(lltlllltl-(~riet~ted  memory

architecture. M(]ll(~t(J1licityerjors  also had a column  orientation similarto  the men-my

errors, but this was dueto the analog architecture.

The memory circuitry includes a buffer circuit for every column of the menmy

cells. This buffer will drive the column  data line when a memory cell in that colLlnm  is

bcillg written to, and it will buffer data being read out from the column. The

tIIlsclcctc(l  IllcIll(Jrycclls  in that c()ltll~ltl:ilei  s()l:ltc(lf  r(J1~lt  l~cc(~llll~lIlb  l]ffcrbyaturtle(l

“offl’  (h igh impedance  s la te )  t ransmiss ion gate, while the sillglc  selected cell is

connected to tllc column  buffer through a turned “on” (low impctiance  state)

transmission gate.

]]uring a write operation, the output of the column buffer (iriver is C()]lllCCted  to

the output ofallil~verteri  tltllel llctlloryccll”  throllgh  :ltl”~illsll~issi(~  llgateill  tile selected

cell. l’ll~)s,  tllecol~lllllll  >~lffcrlllllst be strong enough  to change the state of the selected

memory latch. This is done by forcing the output  of a low strength inverter  in the

memory cell to its opposite state. ‘1’he column buffer must tl~cn be able to source  or

sink more current than the invcrter  in the memory latch can output.
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After exposure to high doses of radiation, the. transmission gate’s high

impedance state might not have such a high impc(iance,  causing current to leak into the

column data line. Therefore, since the co]unm buffer nlust source or sink additimal

current through the leaking transnlission  gates in a(kiition to the current fronl the

selecte(i nx.mory cell latch, it nMy not have sufficient strcngtil  to flip the bit to the

(lcsire(l state. ‘1’ilis  c(m(iition is worst in the last 9 colunms of the synapse array, where

there are 31 memory cells in each column.

Tilere arc other similar failure mechanisms that could cause this same behavior,

each involving changes in im]miance  of the tr:lnsmission ga(es use(i in the mcnmy

cells. l:irst, the transmission gale coul(i  have too high an illl]KXiilllCC  when it is turned

“on” to allow the colunm  buffer 10 program the nlcmory cell. This condition would

add to ti]e difficulty of overcoming the current leaking from turne(i “off” transmission

gates (iiscusscd  above. Second, leakage in the transmission gates of the unselecte(i

cells could overwhelm tile output of tile sclecte(i cell (iuring the rca(i out. This problem

would bc worst in columns populated with the  most mcn)ory  cells but would not

involve the writing circuitry. Any one or a combination of tilcse faiiure nmchanisnls

can cause  the nlcnlory  errors in the synapses,

The Synapses also (ienlonstrute  current lCilkagC as Seen by the ICft shift not Only

in the syll:il>se-llc~ll’oll  curves but in the neuron 1 curve as wcli.  Wiwn a synapse is

bcillg tcstc(l  in the synapse-neuron curve test, all the other synapses in tile same colunm

are programnlc(i  witi~  H DAC weight of zero. This means tilat all of the n-FET



105

swi[chcs in series with the synapse current nlirrors (See ldgurc  1() in Appendix) are

turned “off” (high ilnpcdmce state). With a zero weight, the sign-bit is also zero, and

the p-FEl current steering mirror is turned “of f.” While, the n-l:ErI’ connecting the p-

I~ET mirror to the summing node of all the n-FE’l’ current mirrors is turne(i “off,” the n-

FET connecting the summing node of all the ]1-FET current mirrors to the synapse

output is turned “on. “ “1’bus, the sign bit beit]g m-o favors input of negative current to

the neuron from the synapse, which tends to force the neuron output voltage high. If

the radiation causes the n-l;];’]’  switches to leak s(me current through from the n-FET

current nlirrors,  then each of the synapses prog]ammcd  to zero will tend to force the

neuron in that column high. For higher column nundmr  positions, there will be nlore

synapses with a weight of z,cro leaking current into the current summing input of the

neuron in that colulnn. “1’bus, when a synapse in a column is being tested, it would

nec(l  to have a nej.ytivc input DAC weight va]uc directly propor(iona]  to the nunlbcr  of

synapses in that column in order to force the out])ut of the neuron low.

This explains why the syll:ipse-llelll(~ll  c~lrvcs  progrcssivc]y  shift to tJle left as

thC COIUII1ll  nunlbcr  illC1’CilSeS. It is ncccssary to program a lower (negative) weight

value into the synapse under test to compcnsntc  for the leaking synapses and nuike the

total input current it~to  the neuron close to zero where the tr:insi(ion from low to high

voltage of the signloida]  curve occurs.
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It is important to note that this column dcpcnden(  leakage problem is not

related to the column dependent memory problem. It is only a coincidence of the

specific internal layout of this chip that these problems are both column dependent.

The degradation of the neLIral  network chips whether biased or unbiased for all

three types of radiation was mainly due to the radiation effects from the 532 synapses.

As seen in the synapse-neuron curves and the neuron 1 curve, the leakage current

causes a left shift, forcing the neuron lo be turned on with a lower synapse weight

value. When the memory errors started occurring, monotonici(y  errors increased

significantly as the synapses were programmc(i with incorrect values. ‘Ile sign bit (bit

6) of the memory was shown to have more da]nage  tluin  the other bits. This would

cause the synapses to be programmed wilh a positive value when it should be negative

or vice versa, severely changing the shape of the sy]]:ll>sc-l)ctll”()]l  curves from being

sigmoidal.  Since the synapses arc integrated wilh the ncurol)s,  any dcgrti(ia(ion woul(i

cause tile neuron clmractcristics to change mi therefore, alter the performance of the

whole chip.

5.5 Power Consumption  ancl I.atchup

Power consumption increaseci  with the t(~tal (iose of ra(iiation.  The cilip initially

useti  less timn 80 nlW, but after extreme cunlulativc  doses of ra(iiation,  the power

consumption woui(i exccc(i 1,6 Watts in some c:tscs. ‘1’he chip (ircw more current as it

(icgraded whicil  might be (iue to the 532 synapses leaking current. Also, during  biased
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radiation exposure or during the testing procedures, the chip at high doses wou]d

]atchup  w](1 consunle  nmc than 1.6 Watts in some cases, nlaking  it untestable. Once

the chip drew excessive current and the power consumption w:is greater than 1.6

Watts, it was dcclarcd  untcstab]e and ll(JllfLlllcti(Jllal.

l,atcl~~l]~  occ[ll”s(lllet(~ ril(li~~ti(~1l-ill(lllce(lpll(Jt(~ctlrle1~tsge1lerate(l  by high dose

rate ionizing radiation exposure [11]< CMOS circuits fabricated on semicon(iucting

substrates arc vulnerable to latchup,  tllc state in which a p:ll”iiSitiC  senliconductor-

contro]led  rectifier turns on. Once h~tchup  is initiate(i, it fixes circuit nodes in a high-

currcnt, low-impedance state, almost “shor(il~g>’  the Vdd to ground. Activation of this

p:itllprevcllls  llol.lll:llc ilcl]it  operation and c:tlll]otclltiallyleslllt  in perlllallellt(lalllage

similarto  that associated with dose-rate hard errors, such as fused interconnect lines or

burned-out junctions.

lnhcrcn[  in the CMOS structure are p-n-p and n-p-n parasitic bipolar

transistors. When the “base” region of onc device is composed of the same

semiconductor material as the “collector” of the other device, these bipolars  can fom a

p-n-p-n type rectifier in parallel with each ~h40S invcrtcr.

IIuring norlml operation, the p-n-p-n stays in its Iligh impcdancc,  blocking

state, and the voltage supplies for the chip pass all their current through the FET

structures. If, however, minority carriers are sol]lchow  introduced into a bipolar’s base

region, the p-n-p-n can go into its low impcdancc  state and latch the cell [ 1 1].
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A vertical  n-p-n bipo]al”  sh”ucturc  can be turned “on “ if any n+ diffusion injects

enotlgh  electrons into its p-well base. in a positive feedback configuration with the

vertical  n-p-n is a lateral p-n-p bipohir  transistor [11]. Ilo]es from a p+ source/drain

(liffllsi[~l~  ctilll~e  il~jecte(l  il~t(~tlle  l~-stlbstr:lte base of the p-n-p,

IAtchup  can be initiate(i  electrically by applying signals to a device, or it can be

triggemi  by mliation  events. The selllicoil(lllct(  ~r-col]trolle(l  rectifier may be turned

“on” by a terminal overvoltage con(iition c:iused by a l:i(ii:ltioll-il~(lllce(i  electrical

traI~siellt (Jr byi()l~izillgl  .:i(liiiti()llc  ll:~rtic[cristic(  )fcl()se-r:itee  \~cl~ts  [11]. Eachof  these

triggering  mechanisms i]]jccts ])~i])()].ityc;irrict’s  into the base of the parasitic bipolars.

ionizing ra(iiation  from (iose-rate events can il~ject  current across tile weli/substrate

junction. For p-weli  Ch(lOS, the photocurrents from fencratc(i ln:i.jority  carriers, i.e.,

electrons in ti]e  substrate (hole in the well), act as base currcl)ts of the parasitic bipolar

(leviccs and tend to turn on the rectifier. These effects of ionizing radiation were

observed when the biased neural network chips latched-up during exposure at high

cumulative (ioseso ]Iowevcr, the chips often became untestable (iue to latchup  after

cxpostlre(  l~lrillgt  i>ca]>plic:ttioll”  of test signals.

5.6 Annealing

The cffecls of annealing were significant the first couple of ciays,  especially tile

first c(Jllple ofllollrs,[~Llt” tllCl”C:lfter  l’ClllilillC(l  rCliltiVC1y  unChallgC(i  for several lllOlltilS.

l’l]eclli]>scc]llc(lt(~  lle;~lftO1lltl  lel. :l(iitltiotl(i:  illl:~ge,” l;orcx[ll~lj>lc,tl~e  synapse-neuron
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trmsfer  curves  (analog portion) returned to a more functional (sigmoidal)  state, and the

memory errors ((iigital  portion) (lecrcased. TINLSC CM  be seen in Figures 3.lb, 3.2b,

3.31>,  5.1t~,5.21>,  :t1~(15.31>  c~f Cll:~pter4.  Il(~wcvcr, :ill]lci~lillg  (i()csl~()t  fllllyrest(~re  the

chip to the original state even after several months at room temperature. It is

interesting to note that the tilllletilillgre(lLlce(l  the severity of the radiation damage to

the level observed when the chip received a lower(iose  of radiation. Therefore, this

indicates that with :i]ltlc:lli]lg  tllcclli]]c:lll  withst~lnd  hi,gllCr totill (ioscs  of radiation.
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Chapter 6

Conclusion and Future Research

Recent  technological  advances in artificiid  neural networks have increased the

level of inwrest for critical applications in high dependency cnvirmmcnts,  such as in

intensive mrc units, operating moms, cnlcrg~’ncy rooms, a n t i  recovery  moms of

hospitals where mliablc  pcrfomance  and longevity is a rcquircmcnt.  Thus, this study

allows us to analyze the reliability and robustness of the artificial neural network

electronic hardware by studying their pcrformmce  and degradation characteristics.

The fault tolerant characteristics of artificial neural network electronics is

studied by exposing thcm [0 three types of ionizing radiations: high energy electrons,

high energy  protons, and gamma ml iations. For each cxpcrimcnt,  one neural network

chip, containing 32 neurons and 532 synapses was biasc(l  (with electrical power) while

the other chip was unbiased. “1’he  results showed that the unbiased chips were able to

accumultite an order of a magnitude more radiation dose (1 ()() krads or more) than the

biased chips (less than 20 krads) and still remain functional as ii neural network.

Both the electron and gamma radiations sccmcd  to cause similar degradation

effects on the artificial neural  network chips. in contrast, the chips exposed to proton

radiation needed higllcr cumulative doses before showing any dcgrxiation,  but the

damage was more severe.
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As the total radiation dose increased, the electronic har(iware consisting of

analog  and digital components showed graccfu] degradation. F(M exanlple,  t h e

sigmoidal  function of the neuron became steeper (WMIOSOUS  to increasing the gain),

current leakage from the synapses progressively  shifted the synapse-neuron sigmoidal

curves to the left, and the digital memory of the synapses and the memoly  addressing

circuits began to gradually fail.

Thccffects  oftwom  tcmpcraturc  annealing were sifqlificant thefirst couple of

days following irmiiation,  especially the first couple of hours,  but thereafter remained

relatively unchanged for several months. ‘1’lm unbiased chips showed annealing

bcl~:ivi(~r  wllilctlle L~itisc(i  cl~i~>s (li(ltl(~t  sll()\v:~ll~s  igllific:ltlt]  cc(~vcry. Boththe  analog

ml digital portions of the chip showed some healing. ]Iowcver, annealing does not

fllllyrestorct  llecl)i])t otlleorigil~:ll  st:itceve]l:lfter  scvc]:il  months. Nevertheless, it is

interesting to note tllilt  tile annealing ruiuccd tllc radi:ltion damage to the effect as if

the chipreceivcd  al~)wcr  (tt~seofr:i(li:lti  oil.”

From these rdiation  experiments, we have :i better understanding of the

degradation effects on the artificial neural network  chips, and the amount of damage

(or cumulative mliation  dose) needed before the circuitry becomes nonfunctional.

‘1’hcreforc,  we can modify certain designs on the neural network chip without using

ra(liati()ll-lltll'cicll  illgtcclllli(]tlcs  t(Jclllltlllce  the robustness and fault tolerance.

Currently, two of these artificial neLIIal network chips arc onboard  a S7’RV-lb

(Sp[lrc 7’eCh/10lOgy  Resrffrrh Vrhirlr)  satc]l ite as part of a S]3ilCC  radiat  ion experiment.
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The chips, flying in a geostationary  transfer orbit, pass through the Van Allen belts in

space bcillg, exposed to electron and proton rwliations. Oneof the chips is exposed

wl~iletl~e  (~tllcr cllipis  sllicl(lecl.  13(Jtll  cllil>s re111:iillc(l  unbiasedmost  of the time. In a4

month period, the exposed chip has received only 11 krads of total radiation. Thus, in

contrast to ~rou]ld-biist)d  radiation  study, the space radiation has a lower dose rate

(0.875 mrad/see) and the neural network chi])s have shown only a slight sign of

degradation. Als(~,  t>ctwccll  exp(~stllcst  llcrearc several lloLllsfol”tllecllips”  to anneal.

}Iowever,  the space experiments gives us the opportunity to (demonstrate the Fault

tolerant characteristics and performance of the artificial neural network chip under

realistic application conditions.

in future research studies, usinp these findings as a guideline, more radiation

exposure experiments could be conducted with l’inerdosagcs  and in a more controlled

cnvimnmcnt  (constant temperature) to carefully study the gra(lual dcgmdation  and the

effects of radiation. in addition, (icgra(iation could bc monitored at both a lower level

(i.e., transistor Icvcl) and at a higher levc.1  (i.e., nc.ural  network learning algorithnl).

In theory, the response of in(iividual  transistors to radiation may be used to

elucidate and predict the rcspmse  of a full integrated circui[ to an identical radiation

environment. lncludcd  with the ar(ificinl  neulill  network chips are 6 FET devices,

which arcdcsigned  specifically foresting some of the basic effects of radiation. ~-hese

l~IY1’ dcviccs  represent two technologies (Ph40S and Nh40S) and three types of

dcviccs. “1’hc first is a “thrcshol(i” (iosinwtel,  which mcasum the change in the
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threshold of the I; I}’l’ as a function of total dose. l’his dosimctcr will also provide a

nleans for nlonitorillg  the total ra(jiation (lose. The scco]~(j  (Icvice  is a “leakage”

(hJSilllCter,  WhiC]l l13CMUreS  ~he Clll’rellt  t]ll’OUgh  /1 tLlrllC(~-off (g,ate  tied tO SOUrCe) FET

by applying a voltage across  it. This dosinletcr  provides useful data on intra-FET

(from source to cirain  within a single transistor) leakage mechanisms. The third device

is a “fickl ICalwgc” dosimctm,  which measures the inter-l:IIT  (from me transistor to a

nearby trtinsistor)  leakage current. l’he results of these F’lH’ devices cm then be used

to provide parameters for modeling transistor cllamcteristics. Using circuit simulation

programs such as SPICE, these models  can tlm bc utilized to simulate full circuit

response with total radiation dose. ‘1’hcmforc, the radiation effects on the neural

network chip can bc modeled at the tr~nsistor  k:vel and simulation cm be done to not

only demonstrate graceful degradation, but also to evaluate and optimiz~ sensitivity to

radiation effects.

lxxrning  is the heart of artificial neural nc[works. By using a learning

algorithm, there is a high possibility for the Iletwork to a(iapt  to the electronic hardware

dcgradtition  in the IIcurons and synapses. For example, the synaptic weights might  be

able to a(ljust during training to the incrcascd gain in the neurons and the leakage from

the synapses causing a left shift. Also, with a p:irallcl  architccturc,  the neural network

will be mm-c Pault tolerant with ll(~llfLll~ctiO1~:il  neurons and synapses by compensating

thcm with some of the other functional ones. 7’bus, by applying learning to an artificial
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ncLIrd network architecture,  there would be higher fault tolerance (o the degrading

effects of miialion.
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Appendix

Artificial Neural Network Chip

“1’he artificial neural network chips were s]xxially  designed by the Jet Propulsion

Laboratory (JPI.) for conducting radiation experiments in space onboard  a satellite, but

were designe(i  and fabricated without any r:i(li:itioll-ll:ll”(lcllillg  techniques or any

protect ion from rti(i  i at ion, A photograph of the iiCtllal  chip is shown in Figure 8. The

chip was fabricated by VI .S1 Technology incorporated (V’1’1) using a 2-micron N-well

CMOS process through hflOSIS  (MOS Il~ll~lcllllll(:itiO1l  Service). The die size is 7.9

mm x 9.2 mm and is packageci in a ceramic (M-pin  package. ‘l”he chip requires a single

power supply of 8 volts and consumes less than 80 mW of power.

It contains 32 neuron  CCIIS  and 532 synapse cells arranged in a partially

populated (due to power limitations for space flight) 32 row by 32 column array. A

block diagram of the layout of the artificial neul al network chip is shown in Figure 1

(Chapter 2). The neurons lie along ii diagonal in the :irray. ‘1’hc synapses are placed

where the row number is less than the column  number. I lowevcr, when the column

number is grctiter than 22, the synapses are placed in every row position except along

the diagonal+

Neuron () (bottom left in I;igure 1) can only receive input from an external

Soul’cc. Neuron 1 also can receive input externally or fronl neuron  () through the
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synapse  a(rowo,c( ~llllllll”  1. Nel]r(~lls2tllr(Jtlgl131  rcceivc itl]~ll(so  lllyfrolllall  yoftl~e”

other neurons through the synapses in their respective columns. ‘1’he first 22 neurons

each ctm receive input from as many synapses as the column number that they are

positioned in(i.e., neuron 20, l(Jc:itetl  illc(Jllllllll  ill11111>c120,c ltlllcceiveil  lputfrolll2O

synapses). “I”hc last 9 neurons in colL]nms 23 through 31 all have fully connected

fcc(i[J:ick  circllits all(itlllls ll:~ve31  syll:ll>ses  c(Jllllcc(c(lt  t)tllci llpllt(  )feacllnellr()ll,

‘I’l~cl~;~ttltc[  )ftllellcill:ll  llctw()l"k  cllipis  pl~lll:ilil)~:  lll:il(}gf  ()rc(~t~lpactllessa  Ild

low ~~owcrc~)l~slll]~l)tioll,”  with the digital portio]l only playing a supporting role. The

]Ililjor  all:i]og  components arc the neurons, synal)scs, and an oLItput  buffer. “1’he major

digital components are the static memories for storage of synaptic weight within each

of the 532 synapses.

A.1 Neuron

The neurons are nonlinear tr:illsilllpc(liillcc  amp] ificrs. “1’llecllal”:icteristics  of an

operational atll~>lifierrcsellll>les  a sigmoidal function and thus is a natural circuit for a

neuron. A block diagram of the neuron is showJ) in the upl)cr right corner of Figure 2

(Chapter 2). ll:icll llclll`(Jll  ()lltJJllts  tiv()ltilge  wllicll isasiglllcji(l:  Llfllllcti()ll  ()fits  input

current. A negative input current forces the neuron’s output high, and a positive input

current forces the output low.

‘1’ilcl~ctlroll(l>:ise(i  on ~ifoll~ler(l  esigtll~yJI>I.[ l]) is~ltyl>ic~ilclll”lellt  summing

circuit where the input controls a differential amplifier which controls a current
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fec(i[>ilckcilclli(.  I;igurc 9 shows the circuit scllclnatic  of the variable-gain, signmidal

neuron. ‘1’hc current feedback circuit is voltap,e control le(i,  and outputs a negative

current when given a high input voltage, and outputs a positive current when given a

low input voltage. 7’llellclll.oll’scllrrellt  input is connected to the Iloll-itlvellillginput

of the differential amplifier. ~’hc inverting inpu( is connected to a constant reference

voltagcof4  volts, chosen to be the ol)til]llllllc~}lj”ellt  summing voltage forthe synapse

outputs Hnd midwtiy between ground  and Vdd. ]fthc input current is positive, the

input voltage  will rise slightly, and the diffclmtial  amplit%r’s  output voltage will rise

sharply and produce a negative fcc(iback  current to “cance.]  out” the positive input

CUrl”cllt  . When this is achicvc(i,  (he system is in eqLlilibrium.  “1’ilc  operation for a

negative input currenl is col.1.espoll(litlgly”  equivalent.

'l`ile(iiffelcllti/i]  :llll13]ificr  Llll(iclll"rcllt  fcc(i(>:lck  cil”cllit$ have high gain so that a

few millivolts change on the input wiii pro(i(we a few hun(irc(i  microampere of

feedback current. ‘1’ilis  illlows  the input Vol(i\ge  to remain constant  within a few

millivolts of the reference VOltilge,  as long as the input current is within the opclldting

range (about +/- 500” pA). 3’he consistency of input voltage allows the synapses to

reliably output acurrcnt  extrelllcly  cl(~setot  llecllrl.ellt  tilat tllcy:il”c pr(~grdlllllle(l  f(~r.

‘1’ilellclll(ll]’solltpllt  vo]tagestafc  iSi~ Silllplecil”cuit  Il]ilt will  Output a v o l t a g e

which is a signmi(ial function of tile input current. “1’hcvolta#.c output circuit consists

of p-I;Ii3’ and n-l:l~rl’  current mirrors with their (iriiins  tic(i togctiler  which mirror the

current sources use(itofccd  back current to the neuron inpul. ‘I”hc drains of these FET
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devices are also tied 10 a variable inlpe(iance  circuit whose function is to control gain or

the shape of the neuron’s tl”:il]sil)lpe(i:lllcc  functiml.

If the variable impedance circuit is set to have a high impedance, the

tr:ttlsit~l}~e(l:illce  function will have a very high gitin, and the slope in the region where

the input current is near zero will  be very steep. Thus, it will  tend to quick]y approach

the high asymptote for a negative input current and the mgative asymptote for a

positive input current. The g:lin control circuit is controlle(i  by an externally biased

current mirror whicl] is common to all the  gain control circuits in all of the neurons. If

a high current (-100” pA) is applied to this currcnt nlirror, then the gain control circuit

connected to the neuron output will  huve a low in-ipcdance,  and thus the

tl"allsit13pe(l:illce  ftlllcti(J1l  (Jftllcllellr(Jll  will  ll:lvea lll(~rcgt”a(l~l:[l  slope in the operating

rwgc (+/- 100 pA). In practice, the guin control  is initially a(ijusted to obtain an

output characteristic suitable to the application, ami (hcnfixcd ~tt tllisoptillllllllsettillg.

A volt~tgct(~ctll”j.cllt  convcrtcris  provi(icd for each row to convert the neuron

output voltage to current input for the synapses. ‘I’llis issllowi]il  lI~igtlre loasp artof

tllesyll:lpsccil”cllit  schematic. ‘1’he output voltage of the neulon  controls a current into

a cascode current n~irrorwhich  generates currenl nlirror biases for the synapses in that

row. 'I`lllls,  tlle]lelll()lli  llc:lcllr ()wc()lltl(Jls: illill~>lltcl  llrellt  circuit forthe  synapsesin

that row. When the voltage output ofthc  neuron is high (above 3 ll-I;Iirl’  tllresllol(ls),

there will be sufficient current input for the synfipses  in th:~t row to multiply. The

higher the neuron output voltage, the more current that will be available for the
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respective synapses. On the other  hand, if the neuron voltage output  is low (below 3 n-

FET thresholds), there will be virtually no input current 10 be mirrore(i, and none of the

synapses in that row will ot]tput  significant current.

A.2 Synapse

‘1’he syn:ipsc circuit consists of a 7-bit IIlultiplying  digital to analog converter

(MI> AC) an(i a 7-bit digital memory. This circuit outputs a binary weighted multiple of

its analog input current. ‘1’he input current  coining from the neuron in that row is

multiplied by the stored digital weight (integer  factor bctwccn -63 and +63). The 7-bit

digital memory, consisting of 7 static l:itches, provides programmable weight storage

and is rmdomly accessible. 7’lw upper left corIwr of I:igure 2 in Chapter 2 shows a

block diagram of this synapse. A circuit schematic of this programmable 7-bit synapse

is show in l:igurc 1 (). This design is a modified version of a previous JPL synapse

design [2].

Multiplication is accomplished by con(iitional]y scaiil~g tim input current by a

series of current mirror transistors. I:or each current mirror, a pass tmnsistor,

contro]le(i  by one bit of the (iigital  wor(i, con(iiti(mally allows current  to be place(i on a

common summation line. ‘lTile  bits in the (iigital  wor(i from tile iowest significant bit

(1.S13) to the most significant bit (h4Sl~) are connccte(i  101, 2., 4, 8, 16, an(i 32 current

mirror transistors mspcctively,  so that the input current is scale(i  by the appropriate

alllount. The resulting summation current is unipolar. 1 lowcvcr, a p-FET cascode
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current mirror, controlled by the seventh bit of the (ligital  word, cletennines  the

ciirection of (he output  current, such that two quadrant Illlll(ij>]ic:itioll  is accomplished

(+/- 64 levels). A negative weight value progran lined into tl~e synapse causes it to have

a positive outpat current (outputs  current throu~~ll its p-~;l;rrs) while a positive weight

value causes the output to be negative (through the n-FH’l’s  to ground).

A synapse nuly also bc described as a trallscoll(lllc(allce  amplifier, in that it

effectively takes a voltage output  from a neuron  and amplifies it by a conductance

(weighted by the digital value stored in the synilpse’s memory) to produce an output

current, In this case we consi(icr  the ~oltage  [o current converter to be part of the

synapse instead of the neuron.

Each synapse’s current output  is an input L() a neuron in its colunln,  Thus, there

is a single current summing node in each column to which all the synapses are directly

connected, and that node is also connected to the input of the neuron  in (hat colLmm,

A.3 Output Buffer

The outptlt  buffer is a wide-range tRlllscoll(]Llct:tllcc  amplifier configured as a

unity-gain follower [3]. 7’hc output  voltag,e close]y follows its input voltage an(i

provides sufficient driving power to interface the neural network chip to other chips. It

can drive a load of approximately 1 ()() Iiilo-olllm. f ‘igurc 11 shows the circuit

schematic of the output buffer.
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The input to the output buffer is the voltage from one of the S 1 neurons

sclcctcd by an an:dog multiplexer. A special circuit (lcsigned into the output

nmltiplcxcr  allows the output buffer to be tested separately by feeding its input with an

external] y supp] icd voltage. “1’he single output buffer and multiplexer design was

utilized to simplify the interface between the chip and its external circuitry by re(iucing

the number of separ[ite output signals. The output  buffer operated over the entire

voltage rdl]gc  of the neuron outputs, except when the voltage approached within a volt

of the power supply railge of () to 8 vo]ts. Below one volt, the buffer slowed down

since the transistors in the circuit began operating in the subthrcsho](i  region. The

OLltpLll  VOltagC  iS gcllcHll])I  bC]OW  the illpLlt  VO]t:l~:e thl”OLlghOLlt  thC operLLtillg  range, b u t

this error was moderately increasc(i when the input voltage was within one volt of the

positive power supply. Since al] of the neural ]]ctwork’s Ou[put must go thl”ough  this

buffer, it is the most critical component (rcprcscnting  a single point fiiilure  mechanism

for the chip).
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